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Magnetization dynamics, rheology, and an effective description of ferromagnetic units
in dilute suspension
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The rheological properties of a dilute suspension of ellipsoidal ferromagnetic particles in the presence of a
magnetic field are studied on the basis of a kinetic model, where the flow and magnetic external fields couple
in qualitatively different ways to the orientational behavior of the suspension. In the uniaxial phase the stress
tensor is found to be of the same form as in the Ericksen-Leslie theory for nematic liquid crystals in the steady
state. Expressions for a complete set of viscosity coefficients in terms of orientational order parameters are
worked out. In the low Pe´clet number regime, the viscosity coefficients are given as explicit functions of the
magnetic field and a particle shape factor, where the shape factor may equally represent a nonspherical unit
~agglomerate, chain! composed of spherical particles. Effects due to possible flow-induced breakup of units are
not covered in this work. Further, by considering the magnetization as the only relevant variable, a magneti-
zation equation within an effective field approach is derived from the kinetic equation and compared to existing
magnetization equations. The alignment angle of the magnetization and the first and second normal stress
coefficient are studied for the special case of plane Couette flow. The assumptions employed are tested against
a Brownian dynamics simulation of the full kinetic model, and a few comparisons with experimental data are
made.
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I. INTRODUCTION

Ferrofluids are colloidal suspensions of nanosized fe
magnetic particles in a carrier liquid@1#. Various technical
applications use the fact that the rheological behavior of
rofluids can be manipulated by external magnetic fiel
While the rheological behavior of dilute ferrofluids is rath
well understood, most commercial ferrofluids are more c
centrated and show deviations from the behavior in the di
regime@2,3#. In particular, the kinetic model of internal ro
tations of noninteracting, spherical ferromagnetic partic
introduced in Ref.@4# successfully describes the rotation
viscosity of dilute ferrofluids but is unable to account f
various flow phenomena in commercial ferrofluids, such a
dependence on the symmetric velocity gradient, shear t
ning, and the occurrence of normal stresses~see, e.g.,@2# and
references therein!.

Recent years have seen intensive experimental@3,5,6# in-
vestigations of rheological properties of semidilute~commer-
cial! ferrofluids subjected to an external magnetic field. Th
oretical approaches to the dynamics of ferrofluids based
thermodynamic considerations have been proposed in R
@7–10#. Very recently, one coefficient appearing in the ge
eralized magnetization equation proposed in Ref.@10# has
been determined experimentally@11#.

Extensions of the kinetic model@4# to dilute suspensions
of ellipsoidal ferromagnetic particles have been propose
Refs.@12–14#. Theoretical studies@12,13# investigate the ini-
tial part of the flow curve while Brownian dynamics simul
tions are performed in Ref.@14#. Nevertheless, until five
years ago, ‘‘The peculiarities of a rheological behavior o
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suspension of ellipsoidal ferromagnetic particles in a fi
are scantily explored,’’ p. 281 of Ref.@1#. Very recently, the
kinetic model of ellipsoidal ferromagnetic particles was e
tended in Refs.@15,16# to include also polydispersity effects

In the present work, we consider a Fokker-Planck eq
tion approach@17# applied to the orientational dynamics of
suspension of rigid, noninteracting, ferromagnetic ellipsoi
objects whose magnetization is parallel to the bodies s
metry axis, and work out its explicit relation to the Erickse
Leslie theory of nematic liquid crystals@18#. Five indepen-
dent viscosity coefficients describe the magnetorheolog
homogeneous fluid. Their dependence on the orientatio
order parameters, the shape and concentration of the fe
magnetic units, and the solvent viscosity is worked out
detail. The Miesowicz viscosities, tumbling parameter, n
mal stress differences, and, e.g., the rotational viscosity
crease, are related to combinations of these viscosity co
cients. In case of low Pe´clet number, explicit expressions fo
the coefficients, in terms of the magnetic field~in favor of
the order parameters! are given and compared to previou
results. Rheological properties due to possible flow-indu
breakup of units are not covered in this work, but should
approximately obtained by superposition of the stated res
for a given, yet unspecified, transient distribution. This wo
generalizes earlier results on the Fokker-Planck equa
specialized to spherical ferromagnetic particles@19#, where
the effect of flow alignment of particle axes is not prese
While uniaxial symmetry was the only assumption made
far, we use the stronger assumptions of the effective fi
approximation in order to derive a closed magnetizat
equation from the Fokker-Planck approach and discuss
relation to previous results. We also interpret the experim
tal result obtained in Ref.@11# for the tumbling paramete
within the present kinetic model, and thereby conclude
©2002 The American Physical Society01-1
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the nonspherical shape of ellipsoidal ferromagnetic u
present in the sample. The validity of the presumption
uniaxial orientational symmetry made in the first part of th
manuscript is finally tested against results obtained from
Brownian dynamics simulation of the full kinetic model
plane Couette flow. It is found that all viscosity coefficien
are in good agreement with the results of the uniaxial
proximation. The agreement is enhanced for strong magn
field, resp. low Mason numbers. We stress that this ag
ment does not imply the actual distribution function to
almost uniaxially symmetric. Indeed, even for a large cl
of biaxial orientational distributions the moments that a
relevant for the stress tensor are still rather well appro
mated by the uniaxial expressions. This finding actually m
tivated our analytical treatment of the uniaxial phase to
presented in Sec. III.

This paper is organized as follows: In Sec. II, the kine
model of internal rotations of rigid, ferromagnetic, ellipso
dal units is introduced and some of its properties are
cussed. The relationship between the kinetic model and
Ericksen-Leslie theory~summarized in Appendix A! is estab-
lished in Sec. III. Comparison of the present approach to
results of Ref.@10# is made in Sec. IV as well as an inte
pretation of the experimental results obtained in Ref.@11#.
For the special case of plane Couette flow, the alignm
angle of the magnetization and the first and second nor
stress coefficients are studied in Sec. III C. Finally, so
conclusions are offered in Sec. VI.

II. KINETIC MODEL

Consider an ensemble ofn noninteracting, identical, rigid
ferromagnetic ellipsoids per volume. We assume the sys
to be spatially homogeneous, so that the state is describe
the probability distribution functionf (u;t) of an ellipsoid
being oriented in the direction of the unit vectoru at time t.
Furthermore, it is assumed that the symmetry axis coinc
with the direction of the magnetization of the particles,m
5mu. The motion of a single ellipsoid is influenced by r
tational diffusion, motion due to an external potentialV, and
the hydrodynamic drag caused by velocity fieldv. The dy-
namics is conveniently described by the kinetic equat
@1,17,20#

t] t f 52PéL•@~Ṽ1Bu3D̃•u! f #1
1

2
L• fL@ ln f 1V/kBT#,

~1!

where the potentialV for a magnetic momentm5mu in the
local magnetic fieldH is given by

2V

kBT
5

m

kBT
H•u5hĥ•u5h•u. ~2!

Here, the dimensionless magnetic fieldh5mH/kBT, its am-
plitude h ~Langevin parameter!, and the unit vectorĥ point-
ing in the field direction are introduced. In Eq.~1!, L5u
3“u is the rotational operator with“u being the gradient on
the unit sphere. The dimensionless quantitiesD̃ andṼ char-
acterize the flow geometry. The symmetric part of the fl
02150
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gradient tensor and the vorticity are related to these qua
ties by D[(“v1@“v#T)/25i¹viD̃, and V[(“3v)/2
5i¹viṼ, respectively, wherei¹vi denotes the norm of the
velocity gradient, such thati¹vi5ġ for a shear flow with
shear rateġ. In Eq. ~1!, the Pe´clet number is introduced
Pé5ti¹vi , which measures the relative importance of v
cous and Brownian forces on the particle orientation.

In order to interpret the results in terms of measura
quantities, we explicitly consider Eq.~1! to hold for ellipsoi-
dal ferromagnetic units with positive axis ratior 5a/b,
where each unit is composed ofN ferromagnetic spherica
particles~molecular substituents of the unit!. Accordingly, r
is restricted byN through N21/2<r<N, and r 51 and r
5N correspond to spherical and cylindrical units, resp
tively. In Eq. ~1!, B[(r 221)/(r 211), andN51 implies r
51. Spherical units correspond toB50. In that case, Eq.~1!
reduces to the kinetic equation for dilute ferrofluids given
Refs.@1,4#. The relaxation timet depends on the number o
substituentsN and axis ratior via

t5erNt1 , ~3!

wheret1[t(N51)53hsv1 /kBT is the relaxation time for
an individual sphere with volumev1 suspended in a New
tonian solvent with viscosityhs. The dimensionless shap
coefficienter.0 as a function ofr is given in Appendix B.
One hase151 for spherical units and should use, e.g.,eN to
describe cylindrical units. Using the above notation, num
densities and volumes are related byn5n1 /N, v5Nv1,
however, concentrationf5nv and the productsnm, nh to
appear in the stress tensor remain unaffected by attachi
subscript 1 to all quantities. The relaxation timet of the
ellipsoidal unit is related to its rotary diffusion coefficientDr
and its rotary friction coefficientz rot ~see also Appendix B!
via Dr

2152t5z rot /kBT. Since the ellipsoidal unit is consid
ered as agglomeration of individual spherical particles@15#
each with magnetic momentm1, the magnetic moment of the
ellipsoid is m5Nm1, i.e., h5Nh1. The Mason number Mn
[Pé/h, to be used below, is related to the correspond
Mason number Mn1 for a fluid of individual spherical par-
ticles by Mn5erMn1.

The hydrodynamic stress tensorT for an incompressible
dilute suspension of rigid ellipsoidal particles can be deco
posed into its symmetric and antisymmetric part, see
~A4!. The antisymmetric part reads

T a5
n

2
e•^LV&, ~4!

with the conventional total antisymmetric~Levi-Civita! ten-
sor e of rank 3. Here and below, we use the following not
tion for averages of arbitrary functionsA(u) with respect to
the distribution functionf :

^A&[E
S2

d2uA~u! f ~u;t !, ~5!

where the integration is performed over the thre
dimensional unit sphere. For convenience of notation the
1-2
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MAGNETIZATION DYNAMICS, RHEOLOGY, AND AN . . . PHYSICAL REVIEW E66, 021501 ~2002!
plicit dependence off on time is frequently suppressed in th
sequel. The symmetric part of the stress tensor reads, ac
ing to @1,20,21#,

T s52hs~115fQ1!D15hsf$~2Q32BQ0!~D•^uu&

1^uu&•D!2~Q2322BQ0!D:^uuuu&%1Tpot, ~6!

wherehs is the shear viscosity of the Newtonian solvent. T
geometric coefficientsQi are defined in Appendix C and th
potential contribution is given by

Tpot5
nkBT

2
B^@u“u1~“uu!T#~ ln f 1V/kBT!&. ~7!

Inserting the potential~2! into Eq. ~4! one obtains

T a5
nkBT

2
~h^u&2^u&h!. ~8!

Similarly, inserting the potential~2! into the potential contri-
bution to the symmetric stress tensor, Eq.~7!, gives

Tpot5
nkBT

2
B@6^uu&2~^u&h1h^u&!12^uuu&•h#. ~9!

where uu[uu2(1/3)1 denotes the~symmetric! traceless
part of uu.

A. Equilibrium and stationary state

Stationary solution to Eq.~1! in the absence of flow are o
the canonical formf eq}exp(2V/kBT). For the potential~2!,
f eq takes the form

f eq~u!5
h

4p sinh~h!
exp~h•u!, ~10!

with the Langevin parameterh. Equilibrium momentŝ A&eq
are defined by Eq.~5! with f replaced byf eq. The equilib-
rium magnetization isMeq5nm^u&eq5nmL(h)ĥ, where
L(x)5coth(x)21/x is the Langevin function andĥ5h/h is
the unit vector parallel to the magnetic field. This equili
rium magnetization is the classical result for a system
noninteracting magnetic dipoles.

For later use, we provide the magnetic susceptibility
equilibrium, which is given byxab5nkBTx0dab with x0
5nm2/(3kBT).

The stationary solution to Eq.~1! in case of steady poten
tial flow, V[0, can also be found explicitly,

f s~u!5
1

z
exp~h•u1PéBD̃:uu!, ~11!

wherez is a normalization factor. One may define the Mas
number Mn as Mn5Pé/h, which measures the relative im
portance of viscous and magnetic forces. ForBMn!1, f s
' f eq, while for BMn@1, f s is independent of the magnet
field and determined completely by the flow. According
f s5 f eq holds strictly for spherical particles and also in eq
librium (Pé50).
02150
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B. Approach to equilibrium

In the absence of a flow field, Eq.~1! yields a unique
equilibrium statef eq. The approach to equilibrium is moni
tored by the dimensionless free energy functional per p
ticle,

F@ f #5E
S2

d2u f~u!ln@ f ~u!/ f eq~u!#. ~12!

In terms ofF, the kinetic equation~1! can be rewritten as

t] t f 52PéL•@~Ṽ1Bu3D̃•u! f #1
1

2
L• fLdF@ f #

d f
,

~13!

whered/d f denotes the Volterra functional derivative. Th
time rate of change of the free energy functional~12! is
given by

tḞ5
1

nkBT
@ ta•Ṽ1Tpot:D̃#2

1

2
^s2&, ~14!

where we used Eq.~1! and introduced quantitiesta ands by
T a5e•ta ands5L(dF/d f ). In the absence of flow, Eq.~14!
proves that the free energy functional~12! is nonincreasing,
Ḟ<0, due to the dynamics~1!, with Ḟ50 in equilibrium.

In the presence of a steady potential flow, the same a
ments can be applied to the functionalFs, that is obtained by
replacing the equilibrium distribution functionf eq in Eq. ~12!
by the steady state distributionf s, given by Eq.~11!.

C. Moment equations

From the kinetic equation~1!, the dynamics of thekth
moment^ua1

•••uak
& is obtained,

t] t^ua1
•••uak

&

52Pé(
j 51

k

Ṽaeaa jbK ub)
i 51
i 5” j

k

ua iL
1PéBF (j 51

k

D̃a jbK ub)
i 51
i 5” j

k

ua iL
2kD̃abK uaub)

i 51

k

ua iL G2
k~k11!

2
^ua1

•••uak
&

1 (
j ,l 51
j . l

k

da ja lK )
i 51
i 5” j ,l

k

ua iL 2
k

2
hbK ub)

i 51

k

ua iL
1

1

2 (
j 51

k

ha jK )
i 51
i 5” j

k

ua iL . ~15!

The equation for the first moment,k51, is therefore
1-3
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t] t^u&5PéṼ3^u&1PéB^~12uu!u&:D̃2^u&

1
1

2
~12^uu&!•h, ~16!

and for the second,k52,

t] t^uu&5Pé~W̃•^uu&2^uu&•W̃!1PéB@D̃•^uu&1^uu&•D̃

22D̃:^uuuu&#23^uu&2h•^uuu&

1
1

2
~h^u&1^u&h!, ~17!

whereW̃5e•Ṽ.
Using Eq.~17!, the explicit contribution of the potentialV

to the symmetric stress tensor~6! can be eliminated@20#,

T s52hs~115fQ1!D15hsf$2Q3~D•^uu&1^uu&•D!

2Q23D:^uuuu&1Q0@W̃•^uu&2^uu&•W̃2] t^uu&#%.

~18!

Similarly, with the help of the moment equation~16!, the
explicit dependence on the potential can be eliminated fr
the antisymmetric stress tensor~4!, h5P21

•a, with

a5t] t^u&2PéṼ3^u&2PéB@D̃•^u&2^uuu&:D̃#1^u&,
~19!

where P21 denotes the inverse of the matrixP[(1
2^uu&).

In the absence of potential forces and for Pe´→0, the
steady state stress tensorT reduces toT52h0,rD, with the
zero-shear viscosity of a dilute suspension of magnetic
neutral ellipsoidal particles~axis ratior ),

h0,r5hs1h0,r
f ,

h0,r
f [f$5Q11~2Q32Q2!%hs,

→h0
f[h0,r 51

f 5
5

2
fhs. ~20!

Einstein’s formulah0[h0,r 515(115f/2)hs is recovered
from this expression for spherical particles~see Appendix C!.
Results for the viscosity coefficients below will be related
the concentration-induced increase of the zero-shear-rate
cosity h0

f for spheres, i.e., we eventually use the identit
nz rot52nkBTt5(12h0

f/5)er in order to make the depen
dence on shape evident. We generally omit the second in
r for quantities, ifr 51.

Due to the hydrodynamic drag and the magnetic field,
equation for the moment of orderk, Eq. ~15!, couples to
moments of orderk61 andk62 (k>0). Therefore, a finite
set of closed equations for the macroscopic magnetiza
and the macroscopic stress tensorT cannot in general be
derived from the kinetic model unless some approximati
are invoked.
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III. RESULTS FOR UNIAXIAL SYMMETRY

In order to obtain more explicit expressions for the stre
tensor and the viscosity coefficients, we here propose to c
sider the class of uniaxial distribution functions. This a
proach was applied successfully in Ref.@19# to dilute sus-
pensions of spherical ferromagnetic particles. In the pres
case, in analogy to Ref.@20#, further manipulations are base
on the expressions~8! and ~18! for the antisymmetric and
symmetric part of the stress tensor. It should be mentio
that alternative and nonequivalent approaches for deriv
viscosity coefficients within the uniaxial assumption are p
sible. For example, using this assumption for the formulat
~6!, ~9!, and~18! of the symmetric stress tensor yields diffe
ent results which, for comparison, are presented in Sec. II
By comparison with numerical simulations of the full kinet
model, however, use of the results in Sec. III B is disco
aged, while those presented in the following section sh
rather good agreement.

Uniaxial symmetry of the distribution function with re
spect to the directorn is defined here asf (u;t)
5 f uni(u•n;t). Thereforef has the representation

f uni~u•n!5
1

4p (
j 50

`
1

2 j 11
Sj Pj~u•n!, ~21!

with the scalar order parametersSj5^Pj (u•n)&, andPj are
Legendre polynomials. The moments of the distributi
function ^u&,^uu&, etc., can be expressed in terms of t
directorn and the order parametersSi ~expressions are col
lected in Appendix E!. The Sj are bounded, 0<S1<1 and
21/2<Sj<1 for j .1.

In particular, the equilibrium distribution, Eq.~10!, shows
uniaxial symmetry around the direction of the magnetic fie
neq5ĥ. In the equilibrium state, the orientational order p
rametersSj

eq5L j (h) can be calculated explicitly as a func
tion of the magnetic field,

L j~h![^Pj~u•n!&eq5
I j 11/2~h!

I 1/2~h!
, ~22!

whereI j 11/2 is a modified spherical Bessel function@1#. The
functionsL j (h) satisfy the recursion relation

L j 11~h!5L j 21~h!2
2 j 11

h
L j~h!, ~23!

with L051 andL1(h) is identical to the Langevin function
L(h). In equilibrium, Eqs.~E1!–~E4! reduce to the expres
sions for the equilibrium moments, given, e.g., in Ref.@1#.

For spherical particles, we have shown in Ref.@19#, that
the assumption of uniaxial symmetry leads to very accur
results also out of equilibrium, even if the actual distributi
function is not strictly uniaxial symmetric. The validity o
the assumption of uniaxial symmetry for nonspherical p
ticles is discussed in Sec. V.
1-4
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Inserting relations~E1!–~E4! valid in the uniaxial phase
into Eq. ~16!, the following time evolution equations for th
orientational order parameterS1 and the balance equation fo
the director are obtained:

Ṡ15
3

5
B~S12S3!~D:nn!22DrS11

2

3
Dr~12S2!~h•n!, ~24!

~12nn!•FDrh2
3S1

21S2
N1B

3~3S112S3!

5~21S2!
D•nG50. ~25!

From Eqs.~E1!–~E4!,~18!, the symmetric stress tensor~6!
is found to be of the form~A4! assumed in the Ericksen
Leslie theory if the viscosity coefficients are identified wi
~see also Ref.@20#!

a1522h0
fQ23S4 , ~26!

a21a3524h0
fQ0S2 , ~27!

a422h0,r524h0
fF2

7
Q32S21

3

35
Q23S4G , ~28!

a51a65
16

35
h0

f@3Q32S21Q23S4#. ~29!

Equation~25! is of the general form of the balance equati
for the director assumed in the Ericksen-Leslie theory~A3!.
The viscosity coefficientsg1 and g2 can be extracted from
Eq. ~25! only up to an undetermined factor that relates
magnetic fieldh with the external director body forcehn
appearing in the Ericksen-Leslie theory~A3!. However, in-
serting Eqs.~E1!, ~E2!, ~E3!, and~16! into the antisymmetric
stress tensor~8!, we recover the Ericksen-Leslie form forT a

~A4! with the viscosity coefficients (G[12h0
fer /5

56hsfer)

g15G
3S1

2

21S2
, g252GB

3S1~3S112S3!

5~21S2!
. ~30!

For spherical particles,B50,er51, we recover the resul
obtained in Ref.@19#. Equation~30! introduces also the vis
cosity coefficientg2, which is absent in the kinetic mode
introduced in Ref.@4#. In the context of molecular liquids
and in liquid crystals, this term is known to be responsi
for the flow alignment phenomenon@22,23#. In case of ran-
dom alignment,Si50, we find no contribution to the anti
symmetric stress tensor,g i50, while in the opposite limit of
perfect alignment,Si51, the maximum valuesg15G and
g25BG are attained. Comparison of Eqs.~25! and~30! with
Eq. ~A3! allows us to identify the director body force,hn
5nkBTS1h.

Note that the parametersa4 and g1, given by Eqs.~28!
and~30!, are positive as required from dissipation argume
~A6!. The parametersa i and g i also obey the restriction
~A7!.

According to our result stated in Eq.~30!, the enhance-
ment of the the rotational viscosity for nonspherical units
just given by the quantityer characterizing the shape alon
02150
e

e

s

s

@Eq. ~B3!#. While er 5151, for an axis ratio ofr 510 we
predict an increase ing1 by about 800%.

For later use, we provide the ratio of the coefficientsg i ,

l t[2
g2

g1
5

B~3S112S3!

5S1
. ~31!

As will be discussed in Sec. III C,ul tu,1 implies director
tumbling in steady shear flow, whileul tu>1 implies the ex-
istence of a steady solution if the magnetic field is absen

From Eq.~24!, also the anglew between the direction o
the magnetic field and the magnetization can be calculat

cosw[ĥ•n5
3S1

h~12S2! F12
3B~S12S3!

5S1
Pé~D̃:nn!G .

~32!

Equation ~32! generalizes the corresponding result f
spheres,B50, obtained in Ref.@19#. The additional term is
responsible for the flow alignment of nonspherical particl

A. Small Péclet number

In the low Péclet number regime Pe´!1, the order param-
etersSi may be replaced by their equilibrium valuesSi

eq.
Thus, the alignment anglew, given by Eq.~32!, becomes

cosw0512
3BL2~h!

hL1~h!
Pé~D̃:nn!, ~33!

andw0→0 as Pe´→0. As expected, a perfect alignment of th
direction of magnetization with the magnetic field is o
tained in this regime,n5ĥ.

The corresponding form of the stress tensor~A1! with n
5ĥ reads

T05a1
0~ ĥĥ:D!ĥĥ1a2

0ĥN1a3
0Nĥ1a4

0Da5
0ĥĥ•D1a6

0D•ĥĥ
~34!

and has been obtained previously in Refs.@12,13# from the
kinetic model~1! in the limit Pé→0. The viscosity coeffi-
cientsa i

0 are obtained from Eqs.~26!–~30!, by replacingSi

with their equilibrium valuesSi
eq,

a1
0522h0

fQ23L4~h!, ~35!

a2
01a3

0524h0
fQ0L2~h!, ~36!

a4
022h0,r524h0

fF2

7
Q32L2~h!1

1

35
Q23L4~h!G , ~37!

a5
01a6

05
8

7
h0

fF2Q3L2~h!22Q23

L3~h!

h G . ~38!

For the viscosity coefficientsg1
05a3

02a2
0 and g2

05a6
02a5

0

we find

g1
05G

hL2~h!

h2L~h!
, ~39!
1-5
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FIG. 1. Reduced rotational viscositiesg1
0/G andg2

0/(BG), given by Eqs.~39! and~40! as a function of the dimensionless magnetic fie
~Langevin parameter! h5mH/kBT and axis ratior of the ellipsoid.
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g2
052GB

L~h!@~61h2!L~h!22h#

h@h2L~h!#
. ~40!

The expressions for the viscosity coefficientsa i
0 given in

Refs.@12,13# differ, however, from these results. As pointe
out in Ref.@13#, viscous contributions to the stress tensor
neglected in Ref.@12# and therefore agreement with that r
sult should not be expected. Expressions~35!–~40! also dis-
agree with the result in Ref.@13#, which were obtained with
the help of an ansatz for the linearized, stationary distri
tion function in the limit Pe´→0. In case of spherical par
ticles, the expression~39! with G56hsf was already de-
rived in Ref.@4# and found to agree with the exact express
in the limit Pé→0 within 3% @24#. However, comparison to
the tabulated values ofg1

0 in Ref. @13# yields discrepancies o
the order 10%. Therefore, no further comparison to result
Ref. @13# is made in the sequel.

In Fig. 1, the viscosity coefficientsg1
0 ,g2

0, given by Eqs.
~39! and ~40!, are shown as a function of the magnetic fie
h and the axis ratio of the ellipsoidr. The coefficientsg1

0 ,g2
0

are normalized by their maximum values. From Fig. 1 it
seen that the values of the viscosities increase with incr
ing r, the limit r→1 corresponding to the result for spheric
particles.

B. Parodi’s relation and an alternative set of viscosity
coefficients

For small Pe´clet numbers, the stress tensorT is a linear
tensor function of the symmetric and antisymmetric veloc
gradient, given by Eq.~34!. Employing Onsager’s reciprocity
relation, the matrix providing the linear relation between t
stress tensor and the velocity gradient is assumed to be
metric. In the present case, this relation is known as Paro
relation @23#,

a2
01a3

05g2
0 . ~41!

The validity of Parodi’s relation in the description of liquid
crystalline polymers has frequently been discussed in the
erature@20,23#. From Eqs.~36! and ~40! it is seen that Par-
odi’s relation is not satisfied identically except in the lim
02150
e

-

in

s-

e
m-
i’s

it-

Si→1, i.e.,h→`. Note, that in this regime the assumptio
of uniaxial symmetry is most likely valid.

The violation of Eq.~41! for finite h might be considered
as a drawback of the preceeding approximation. Althou
one should remember that the assumption of uniaxial s
metry is in general not satisfied strictly by the underlyi
kinetic model. The violation of Parodi’s relation stems fro
the different treatment of the symmetric and antisymme
stress tensor in the above derivation: the first-moment eq
tion is used for the formulation of the antisymmetric stre
tensor and the second-moment equation for the symme
stress tensor. Since we require the limit of spherical partic
B50, to be given byg1, Eq. ~30! in accordance with previ-
ous results@4#, Parodi’s relation can be preserved if the firs
moment equation is considered only and no use of Eq.~18! is
made. If the magnetic field is eliminated from Eq.~9! with
the help of Eq.~19!, the resulting stress tensor is given by t
Ericksen-Leslie form~A4! with an additional termbnn.
Since b→0 for Pé!1, the original Ericksen-Leslie form
~A4! is restored for small Pe´clet numbers. The coefficient
g1 ,g2 are again given by Eq.~30!. The coefficients appear
ing in the symmetric stress tensor differ, however, from E
~26!–~29!,

a1
P522h0

f~Q2322BQ0!S42
3

5
G

B2

21S2
FS3~3S112S3!

1
3~S12S3!

10~12S2!
~10S329S1S22S2S3!G , ~42!

a2
P1a3

P5g2 , ~43!

a4
P22h0,r

P 5
4

7
h0

fF ~2Q321BQ0!S21
1

5
~Q2322BQ0!S4G ,

~44!

a5
P1a6

P5
4

7
h0

f@3~2Q322BQ0!S212~Q2322BQ0!S4#

1g2l t , ~45!
1-6
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where the zero-shear viscosity is given byh0,r
P 5hs1h0,r

P,f

with h0,r
P,f 5h0

f@Q11((3/2)Q32Q22BQ0)/5# and h0
f is

given by the last of Eqs.~20!. Diagonal contributions to the
stress tensor have again be omitted since we consider inc
pressible conditions. From Eq.~43! it is seen that Parodi’s
relation ~41! is satisfied and holds for arbitrary Pe´clet num-
bers. Comparison of Eqs.~26!–~29! and ~42!–~45! together
with Eq. ~30! are compared in Sec. V with the result
Brownian dynamics simulations of the full kinetic model f
steady shear flows. We will show that the agreement is be
for the first set of viscosity coefficients@Eqs.~26!–~29!, ~30!#
than the second@Eqs. ~42!–~45!, ~30!#. Thus, violations of
uniaxial symmetry by the kinetic model seem to be be
approximated if the assumption of uniaxial symmetry is i
posed on the form~18! of the symmetric stress tensor than
the definition~6!.

C. Steady shear flow

In this section, the previous results are applied to the
portant situation of a steady laminar shear flow between
parallel plates. The notion of the Miesowicz viscosities
introduced. Let the flow be oriented along thex direction and
the gradient iny direction,v5@v(y),0,0#.

If the local magnetic fieldh lies in the plane of shear, th
magnetic field and the director can be written as

h5h~cosq,sinq,0!, n5~cosu,sinu,0!, ~46!

whereq is the angle between the magnetic field and the fl
direction andu is the angle between the director and hen
the magnetization and thex direction. Thus, the alignmen
angle w, introduced above, is given byw5q2u. In the
steady state, the momentum balance~A2! becomes

g~u!ġ5
dp

dx
y1s, ~47!

whereġ5dv/dy ands is the constant shear stress applied
the fluid and

g~u!5
1

2
@2a1 sin2u cos2u1~a52a2!sin2u1~a6

1a3!cos2u1a4#. ~48!

If there is no pressure gradient and the flow is caused by
plate moving at uniform velocity parallel to its own plane w
havedp/dx50 ands5” 0. On the other hand, if the plate
are at rest and takingy50 at the center between the plat
givesdp/dx5” 0 ands50.

In the present flow situation, the balance equation for
director, Eq.~25!, becomes

Mn~ g̃11g̃2 cos 2u!1
1

2
sin~q2u!50, ~49!

where the Mason number Mn5tġ/h and dimensionless vis
cosities g̃ i[g i /G, i 51,2, have been used. Equations~47!
and ~49! can be solved to give the alignment angle and
02150
m-

er

r
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-
o

e

ne

e

e

velocity gradient. If the plates are separated far enou
which we assume in the following, boundary effects can
neglected.

In the absence of a magnetic field, the orientation an
approaches the stationary valueu0 defined by

cos~2u0!52g1 /g2[1/l t . ~50!

The interpretation ofl t as tumbling parameter stems fro
Eq. ~50! which has no solution forul tu,1. Therefore, in the
absence of a magnetic field,ul tu,1 implies director tum-
bling while ul tu.1 allows for a steady solution@23#.

If the magnetization~and not necessarily the magnet
field! is oriented parallel to the flow (sinu50) and gradient
(cosu50) direction, the so-called Miesowicz~shear! viscosi-
ties h1 ,h2 are measured, respectively, with 2h15a31a4
1a6 and 2h252a21a41a5. Since these viscosities ar
predicted to depend on the shape of the ferromagnetic u
we will systematically label them with a second index~r! in
the following. By using Eqs.~48! and ~26!–~30! we obtain

h1,r5h0,r12h0
fF3er

10

3S1
2

21S2
~12l t!1

1

7 S Q322
7

2
Q0DS2

1
4

35
Q23S4G , ~51!

h2,r5h0,r12h0
fF3er

10

3S1
2

21S2
~11l t!1

1

7 S Q321
7

2
Q0DS2

1
4

35
Q23S4G . ~52!

If the magnetization is oriented parallel to the flow vorticit
the Miesowicz viscosityh35a4/2 is measured,

h3,r5h0,r2
4

7
h0

fFQ32S21
1

10
Q23S4G . ~53!

A fourth viscosity coefficienth12 has been introduced in or
der to fully characterize the shear viscosity,

h1254h4522~h11h2!5a1 ,

where h45 is the viscosity with the director parallel to th
bisector between thex andy axis. From Eqs.~51! and ~52!
the difference of the Miesowicz viscosities is found to
given by

h2,r2h1,r52h0
fF3er

5

3S1
2

21S2
l t1Q0S2G . ~54!

In Sec. V, also the~experimentally more important! vis-
cosity coefficientsha, hb , and hc are considered that ar
measured if the magnetic field~and not necessarily the mag
netization! is oriented in flow, gradient, and vorticity direc
tion, respectively. The viscosity coefficientsha, hb , andhc
agree withh1 , h2, andh3 only in the limit Pé!1, see Sec.
III A.
1-7
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From the Miesowicz viscosity coefficients the so-call
McTague@1# viscosity coefficients are found,

h i5h1,r , h'5~h2,r1h3,r !/2, ~55!

which are measured in a pipe flow, if the magnetization
oriented in flow and perpendicular to the flow direction, r
spectively. For spherical particles,B50, one obtainsh i
5h0 andh'5h01g1/4, whereh05h0,r 515hs1h0

f is the
viscosity of a dilute suspension of magnetically neut
spherical particles.

Dilute suspensions of nonspherical particles also sh
normal stress effects. The first normal stress coefficientN1
for the shear flowv5@v(y),0,0# is defined asN15(Tyy

2Txx)/ġ, with ġ5dv(y)/dy. Analogously, the second nor
mal stress coefficientN2 is defined asN25(Tzz2Tyy)/ġ.
For the geometry described by Eq.~46!, these coefficients
can be written as

N15
1

2
@a1 cos~2u!1~a21a3!#sin~2u!, ~56!

2N25
1

4
@a1 sin2u1a21a31a51a6#sin~2u!. ~57!

Note that the normal stress coefficientsN1 ,N2 vanish for
perfect orientation in either flow or gradient direction.

D. Small Mason number

For small Mason numbers, Mn!1, the dynamics is domi-
nated by the magnetic field. For Mn50, the stationary value
u05q is found from Eq.~49!. This corresponds to perfec
alignment of the director with the external magnetic field.
case of nonvanishing but small Mason number, Mn!1, the
alignment angle is obtained from Eq.~49! asu5u01Mnu1
1O(Mn2), with the first-order contribution

u15g̃11g̃2 cos 2q. ~58!

In the limit of perfect orientation,Si51, u1 becomesu151
1B cos 2q, while u150 for isotropic states. With the help o
the alignment angleu, the normal stress coefficientN1 given
by Eq. ~56! becomes

N15H Mn~ g̃12g̃2!~2a11a21a3! for q5p/2,

2Mn~ g̃11g̃2!~a11a21a3! for q50,
~59!

if the magnetic field is oriented in the gradient (q5p/2) or
velocity (q50) direction.

In the low Péclet number regime, the order parametersSi

can be replaced by their equilibrium valuesSi
eq. Thus, the

Miesowicz viscositiesh i ,r given by Eqs.~51!, ~52!, ~53! be-
come explicit functions of the magnetic fieldh and the axis
ratio r. Figure 2 shows the reduced Miesowicz viscosit
Dh̃ i

0[(h i ,r
0 2h0,r)/2h0

f , that result upon the replacementSi

→Si
eq in Eqs.~51!, ~52!, ~53!. Experimental results are mos
02150
s
-

l

w

s

commonly given in terms of the relative shear viscos
change, which in case Pe´!1 is related toDh̃ i

0 by

Ri
0[

h i ,r
0 2h0,r

h0,r
5Dh̃ i

0 5f

11h0,r
f /hs

. ~60!

Note that within the present modelDh̃ i
0 is independent of the

volume fractionf which is not the case forRi
0 . In the limit

of strong magnetic field, Mn!1, the magnetic moments ar
perfectly oriented,Si→1. In this case, the Miesowicz vis
cosities~51!, ~52!, and~53! approach their limiting values

h1,r
` 5h0,r12h0

fF3er

10
~122B!1

1

5
~Q213Q3!G , ~61!

h2,r
` 5h0,r12h0

fF3er

10
~112B!1

1

5
~Q213Q3!G , ~62!

h3,r
` 5h0,r12h0

fF1

5
~Q222Q3!G , ~63!

with h i ,r→h i ,r
` 1O(h21) as Si→1. It is interesting to note

from Eqs.~62! and~63! thath2,r
` .h0,r andh3,r

` ,h0,r , while
from Eq. ~61! one finds, thath1,r

` .h0,r for r ,r crit andh1,r
`

,h0,r for r .r crit , with r crit'1.96. From Eqs.~61!–~63! the
inequality h2,r

` >h1,r.h3,r is verified with h2,r
` 5h1,r for r

51. We mention thath2,r
` >h1,r is in agreement with the

results of nonequilibrium molecular dynamics simulations
a fully oriented model ferrofluid if the magnetic interaction
of the colloidal particles are strong enough@25#.

For weak magnetic field,h!1, expandingh i ,r
0 in powers

of the Langevin parameterh leads to

h i ,r
0 5h0,r12h0

fcih
21O~h3! for h→0, ~64!

where the coefficientsci depend only on the axis ratior,
c15c2Q0(121/B)/12, c25c1Q0(111/B)/12, and c35
22c, wherec5Q32/105. Forh2,r , the quadratic behavio
predicted in Eq.~64! is seen in recent experiments on a co
mercial ferrofluid@3#.

Denoting the reduced McTague viscosity coefficients
DX5@hX,r(h)2hX,r(h50)#/hX,r(h50), X5i ,', we no-
tice thatD i changes by approximately 30% andD' by al-
most 400% forh'10 andr'10.

IV. EFFECTIVE FIELD APPROXIMATION

The so-called quasi-equilibrium approximation~QEA! is
a powerful tool to derive macroscopic equations from kine
models@26–28#. Note, that in the context of ferrofluids, th
term ‘‘quasi-equilibrium approximation’’ is sometimes use
for the special approximation of neglecting magnetic rela
ation processes@1#. Here, the term QEA is used in its broa
sense, as is common in many branches of statistical phy
~see, e.g.,@26,27# and references therein!. Note, that ‘‘quasi’’
does not imply ‘‘near.’’

As set of macroscopic variables we choose the first m
ment of the distribution function,A5^u&. The QEA is ob-
1-8



ith

MAGNETIZATION DYNAMICS, RHEOLOGY, AND AN . . . PHYSICAL REVIEW E66, 021501 ~2002!
FIG. 2. Reduced Miesowicz viscosity coefficientsDh̃ i ,r
0 [(h i ,r

0 2h0,r)/2h0
f , as a function of the reduced magnetic fieldh and the axis

ratio r of the ellipsoid. The figures fori 51,2,3 from top to bottom, correspond to Eqs.~51!, ~52!, ~53! with the replacementSi→Si
eq(h). We

observe thatDh̃2
0 is positive over the entire interval ofh and r values shown and increases monotonically with increasingh and r. On the

contrary,Dh̃3
0 is negative and decreases monotonically with increasingh andr. Finally, Dh̃1

0 is negative and decreases monotonically w
increasingh and r only for large values ofh and r.
to
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ent
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tained by minimizing the free energy functional subject
fixed constraints@26,27,29#,

F@ f #→min, ^1&51, ^u&5A. ~65!

Carrying out the minimization of the functional~12! subject
to the constraints~65!, one obtains

f * ~u!5 f eq~u!exp~L̃•u1L̃0! ~66!

with the dimensionless Lagrange multipliersL̃ and L̃0. Av-
erages of functionsA(u) with respect to the distribution
function ~66! are denoted by

^A&* [E d2uA~u! f eq~u!exp~L̃•u1L̃0!. ~67!

The Lagrange multipliersL̃ and L̃0 are determined by the
constraints

^1&* 51, ^u&* 5A. ~68!

Upon reparametrization,je5h1L̃, the generalized canoni
cal distribution~66! becomes

f * ~u!5
je

4p sinh~je!
exp~je•u! ~69!
02150
with the normje of je . Note, that the distribution function
~69! are uniaxially symmetric,f * (u)5 f * (u•n), where the
director n is parallel to je and M* , n5je /je5M* /M* .
Therefore, results of Sec. III are also valid in the pres
approximation.

Comparing Eqs.~69! and ~10!, we observe that the QEA
distribution function can be obtained from the equilibriu
distribution upon replacing the magnetic fieldh by the so-
called effective fieldje5h1L̃. Thus, the so-called effective
field approximation introduced in Ref.@4# is just the QEA for
the special choice~65! of macroscopic variables. While thi
approximation gives accurate results in case of spherical
ticles,B50 ~see, e.g.,@30#!, the accuracy of the approxima
tion ~72! for B5” 0 remains to be studied.

Moments of f * of order four or less are given by Eqs
~E1!–~E4!, where the scalar orientational order paramet
Sj are now given as explicit functions ofje ,

Sj* 5L j~je!, ~70!

where functionsLi(x) are defined by Eq.~22!. The macro-
scopic magnetizationM5nm^u& is obtained in terms ofje
as

M* 5nmA5nmL~je!je /je . ~71!
1-9
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The time evolution of the macroscopic variablesA, i.e., of
the magnetization̂u& within the QEA, is found from Eqs
~69!,~16! with the help of Eqs.~23!,~70! and reads

Ȧ5V3A1B~D•A2^uuu&* :D!2
1

2t
~12^uu&* !•L̃.

~72!

The macroscopic free energyF* (A) is defined as the free
energy functional~12!, evaluated with the distribution func
tion ~66!, F* (A)5F@ f * #. The Lagrange parametersL̃ have
a nice interpretation as the variables conjugate to the ma
scopic ones,

L̃5
]F* ~A!

]A
. ~73!

The time rate of change of the macroscopic free energ
Ḟ* 5L̃•Ȧ and becomes, upon inserting Eqs.~73! and ~72!,

Ḟ5L̃•~V3A!1BL̃•~D•A2^uuu&* :D!

2
1

2t
L̃•~12^uu&* !•L̃. ~74!

Note that Eq.~74! coincides with the exact expression E
~14! if the latter is evaluated withf * . This result illustrates
the fact that the QEA conserves the type of dynamics,
the functionF* (A)5F@ f * # is an H function of the QEA
dynamics if the functionalF is anH function of the under-
lying dynamics, whileF* is conserved by the QEA dynam
ics if F is conserved by the underlying dynamics@31#.

A. Magnetization equation

Inserting the explicit form of the moments of order tw
and three into Eq.~72! and using Eq.~71! yields a closed
equation for the macroscopic magnetization,

Ṁ2V3M52
1

2t
~ t̃111 t̃2MM !•L1l2D•M

1l3~D:MM !M, ~75!

where the dimensional Lagrange multipliersL have been
introduced,L̃5mL/(kBT), andx05nm2/(3kBT) is the ini-
tial susceptibility. The coefficientst̃ i ,l i are defined as

t̃153x02
M

He
, t̃25

3

2M2 F M

He
2x0G , ~76!

l25l t , l352
1

~nm!2

BS3

S1
3

, ~77!

wherel t is given by Eq.~31!, M denotes the norm of the
magnetizationM, and He is the norm of the dimensiona
effective fieldHe5H1L. Since we consider here only in
compressible flows, terms proportional to traceD are absent.
Equation~75! is, on the one hand, a generalization of E
02150
o-

is

.,

.

~2.15! of Ref. @9# which does not consider terms proportion
to the symmetric velocity gradientD. On the other hand, Eq
~75! is a special case of Eq.~15! of Ref. @10# which contains
additional terms proportional toM3h and M3D•M that
cannot be derived within the present kinetic model wh
using the QEA. It should be mentioned that Eq.~75! is de-
rived from the kinetic model~1!, while the magnetization
equations proposed in Refs.@9,10# are derived within a ther-
modynamic framework. Note, that in the present case,
Lagrange multipliersL are the conjugate variables to th
macroscopic magnetization with respect to the free ene
Eq. ~73!, and play the role of the conjugate variables w
respect to the energy density introduced in Ref.@10#. Note
also the limitation to uniaxial symmetry. In the case
spherical particles,B50, the result of Martsenyuket al. @4#
is recovered from Eqs.~75!, ~76!, and~77!.

Coefficientl2 has been determined experimentally ve
recently in Ref.@11#. For an ester based commercial ferr
fluid with volume fractionf'0.07, a valuel250.260.05
was measured, roughly independent of the strength of
magnetic field between 5 and 16 kA/m. Interpreting this
sult within the present kinetic model we first notice that t
experiments in Ref.@11# were performed in the low Pe´clet
number regime, Pe´!1. Thus the order parametersSi are well
approximated by their equilibrium valuesSi

eq. Inserting Eqs.
~39! and ~40! into Eq. ~77! we find

l2'l2
0[2

g2
0

g1
0

5B
~61h2!L~h!22h

h2L~h!
. ~78!

For weak magnetic fields, like the ones employed in the
periment of Ref.@11#, l2

05 3
5 B1O(h2) is obtained from Eq.

~78!. The absence of a linear term inh might explain the
constant value ofl2 observed over the interval of magnet
field strengths 5<H @kA/m#<16, approximately corre-
sponding to 0.3<h<0.96. Within the present kinetic mode
the experimentally determined valuel250.260.05 corre-
sponds to an asphericity of the particles ofr 51.460.1. This
value is smaller than the estimate in Ref.@11#, r 52, which is
based on the stationary distribution~11! of ellipsoidal ferro-
magnetic particles in a potential flow.

As noted also in Ref.@10#, the application of Eq.~75! is
limited to the uniaxial regime. In general, corrections to E
~75! are expected in case of biaxial symmetry of the orie
tational distribution function for the magnetic units. For
discussion of biaxial symmetry in the case of spherical p
ticles, see Ref.@19#.

B. Stress tensor

In Ref. @10#, also an expression for the symmetric stre
tensorT s was given in terms of the conjugate variables.
shown in Sec. III,T s derived from the kinetic model unde
the assumption of uniaxial symmetry is of the Erickse
Leslie form~A4!. The comparison of this result to the stre
tensor given by Eq.~16! in Ref. @10# is facilitated by rewrit-
ing the stress tensor~6! in terms of the dual variablesL.
Within the QEA, the potential contribution to the symmetr
stress tensor,Tpot, can be rewritten as
1-10



io

tio

ve

n
ti

c
al

-
t

in
a-

d-
t

th
r

em

r

s
-

ate
en-

w
d 5
ear

c-
or
. III
the
ters
. 4
u-

n
or
ent

e

ile
e

ffi-
es,

sity
d
e-

m-

to

the

MAGNETIZATION DYNAMICS, RHEOLOGY, AND AN . . . PHYSICAL REVIEW E66, 021501 ~2002!
Tpot5^u&* L̃1L̃^u&* 22^uuu&* •L̃. ~79!

Inserting the form of the moments and using the express
for the macroscopic magnetization, we find

Tpot5
1

2
l2~ML1LM!1l3MMM •L. ~80!

In Eq. ~80!, we have dropped diagonal contributions toTpot

since we consider here only incompressible flows. Equa
~80! is a special case of equation~16! in Ref. @10#. Viscous
contributions to the symmetric stress tensor are, howe
absent from Eq.~16! in Ref. @10# while they do occur in the
kinetic model considered here, Eq.~6!.

V. BROWNIAN DYNAMICS SIMULATIONS

In order to discuss the validity of several assumptio
made in the previous sections, we here present simula
results of the numerical solution of the full kinetic model~1!.
The numerical solution to the kinetic equation~1! is obtained
by Brownian dynamics~BD! simulations of the stochasti
processUt that satisfies the following stochastic differenti
equation corresponding to the kinetic equation@32#:

dUt5Pt•@~V3Ut1BD•Ut1h!dt1dWt#2Ut

dt

t
.

~81!

The projector perpendicular toUt is denoted byPt[(1
2UtUt) andWt is a three-dimensional Wiener process@32#.
Using Itô’s formula, it is verified that Eq.~81! conserves the
normalization ofUt . We recall thattV5PéṼ ~same forD)
with dimensionless tensorsṼ,D̃ characterizing the flow ge
ometries. The dimensionless simulation parameters are
Langevin parameterh5mH/kBT, the axis ratior, and the
Péclet number Pe´. Dimensionless times are expressed
units of a relaxation timet. These parameters carry inform
tion about the implicit system parameterN, cf. Sec. I. For
example, for cylindrical units made of a given numberN of
particles, r 5N, h5Nh1 , t5NeNt1, and Pe´5NeNPé1 in
terms of ‘‘microscopic’’ quantities. The latter may be consi
ered as fixed system parameters, if one is interested in
influence of chain length on the material properties. On
other hand,N and alsor may be eliminated by using a furthe
model for the effect ofh and Pe´ on these parameters.

In order to integrate Eq.~81! numerically, a weak first-
order scheme is used. By construction, the numerical sch
guarantees the normalization of the random unit vectorUt
@32#. For various initial conditions, the simulations are pe
formed for an ensemble of 105 random unit vectorsUt with
time step 1023t. Figure 3 shows the result of BD simulation
for the~ensemble averaged! relaxational dynamics of the ori
entational order parametersSi for a perfectly oriented initial
state in a plane Couette flow with Pe´50.1 and the magnetic
field h51 in the gradient direction. The value ofS1 and the
directorn are obtained from Eq.~E1!, while the valuesSi for
i .1 are obtained assuming relations~E2!–~E4!. A stationary
state is attained for timest*2t.
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In the sequel, simulation results for the stationary st
will be presented that are collected as averages over the
semble and subsequent time averages for times 10t,t
,20t. Plane Couette flow is considered in order to allo
comparison to analytical results in Sec. III C. Figures 4 an
show the result of the BD simulation for the reduced sh
viscositiesha, hb , andhc , for Péclet number Pe´50.1 if the
magnetic field~and not necessarily the magnetization! is ori-
ented in the flow, gradient, and vorticity direction, respe
tively. Figure 4 shows the results of the BD simulations f
the shear viscosities in comparison to the results in Sec
based on the assumption of uniaxial symmetry, where
values of the director components and the order parame
were extracted from the BD simulation. It is seen from Fig
that the results of Sec. III agree qualitatively with the n
merical simulations and that Eqs.~26!–~29! provide a very
good description of the numerical results, while Eqs.~42!–
~45! do so only for strong magnetic fields. As will be see
later, the assumption of uniaxial symmetry is violated f
weak magnetic fields so that results of Sec. III repres
approximations to the actual viscosities. Since Eqs.~26!–
~29! provide a better approximation also for this regime, w
no longer consider Eqs.~42!–~45! in the sequel. For weak
magnetic field, the viscosity increases quadratically, wh
for strong field it approaches a limiting value. Since the P´-
clet number is small, it is expected that the viscosity coe
cients are well approximated by the Miesowicz viscositi
ha'h1,r , hb'h2,r , hc'h3,r . Figure 5 shows that the
agreement with the analytical predictions~51!–~53! is very
good.

It should be mentioned that three different shear visco
coefficients,ha, hb , and hc , have indeed been observe
experimentally on colloidal solutions of magnetite in tetrad

FIG. 3. Relaxational dynamics of the orientational order para
eters Si as a function of dimensionless timet/t for a perfectly
oriented initial state in plane Couette flow with Pe´50.1 and mag-
netic field h51.0 oriented in the gradient direction. From top
bottom the rank of the order parametersSi increases asi 51,2,3,4.
The order parameters are extracted from the BD simulation with
help of Eqs.~E1!–~E4!. The directorn and S1 are defined by Eq.
~E1!, while S2 , S3, andS4 are determined from̂uu&, ^uuu&, and
^uuuu&, respectively, assuming relations~E2!–~E4!.
1-11
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PATRICK ILG AND MARTIN KRÖGER PHYSICAL REVIEW E66, 021501 ~2002!
cane@33#. The authors of Ref.@33# speculate that their result
might be explained by the presence of anisotropic, ellipso
particles and estimate their aspect ratior. Figure 6 shows
their result for the shear viscositiesha, hb , and hc . The
values of the magnetic field are transformed into the redu
magnetic fieldh assuming a temperature ofT5300 K. Ac-
cording to Ref.@33#, the suspension shows hydrodynam

FIG. 4. Viscosity changeTyx /ġ2hs as a function of reduced

magnetic fieldh for plane Couette flowv5(ġy,0,0). The Pe´clet
number is Pe´50.1 and the axis ratio was chosenr 55. The ordering
of the curves from top to bottom corresponds to magnetic fie
parallel to the velocity gradient, the velocity, and the vorticity d
rection, respectively. Symbols denote results from BD simulati
the solid and dashed lines represent the semianalytical resul
Eqs.~26!–~29! and~42!–~45!, respectively, where the values for th
order parameters and director components were obtained from
BD simulation.

FIG. 5. Viscosity changeDh̃ i ,r
0 as a function of reduced mag

netic fieldh for plane Couette flow. The Pe´clet number is Pe´50.1
and the axis ratio was chosenr 55. The ordering of the curves from
top to bottom isi 52,1,3, corresponding to magnetic fields paral
to the velocity gradient, the velocity, and the vorticity directio
respectively. Symbols denote results from BD simulation,
straight lines represent the analytical results, Eqs.~51!, ~52!, and
~53! with the replacementSi→Si

eq(h).
02150
al

d

volume fraction off'0.062 and mean magnetic mome
m1'3.533104mB of colloidal particles. Although not state
explicitly in Ref. @33#, we assume the experimental resu
shown in Fig. 6 were obtained in the low Pe´clet number
regime. Thus, the relative change of shear viscosity is gi
by Ri

0 , Eq. ~60!. In qualitative agreement with the prese
results, it is found thathb.ha.hc andhb.ha.0.hc for
weak magnetic fields. However, their resulthc.0 for strong
magnetic fields is not predicted by the present model. T
discrepancy is most likely interpreted as a signature of
formation of structure induced by the external magnetic fie
whose amount~effect onr in our notation! should depend on
the applied magnetic fieldh. In Fig. 6 also the analytica
results~51!–~53! with equilibrium values for the order pa
rameters are shown. The axis ratior was chosen asr 51.5,
close to the estimater 51.3 of Ref.@33#. The effective mag-
netic moment ism5rm1 since the ellipsoidal particles ar
considered as agglomerates of individual particles, each w
individual magnetic momentm1. From Fig. 6 it is seen tha
quantitative agreement with the theoretical predictions
poor, except forh1. In view of the qualitative difference in
the behavior ofh3,r , we have not attempted to improve th
comparison by a different fit (r is the only fit parameter in
Fig. 6!, by considering polydispersity effects, or the effect
the magnetic field on the shaper. In Ref. @33#, also results
for a different suspension showing higher anisotropy of
viscosity coefficients are shown. Since in that case neit
volume fraction nor mean magnetic moment are given,
comparison to the theoretical result is shown.

In Fig. 7, the effect of the Pe´clet number on the shea
viscosityh2 is shown for fixed values of the magnetic fiel
Shear-thinning behavior is observed, in qualitative agr
ment with experimental results@5#. Note that an additiona
mechanism of shear thinning is present in ferrofluids due
the breakup of agglomerates in shear which is not inclu
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,
of

he

l

e

FIG. 6. Relative viscosity changeRi , Eq. ~60!, as a function of
reduced magnetic fieldh for a colloidal suspension of magnetite i
tetradecane. Data are taken from Ref.@33#. Also shown is a fit to the
data by Eqs.~51!–~53!, where the axis ratio was chosenr 51.5. The
ordering of the curves from top to bottom isi 52,1,3, correspond-
ing to magnetic fields parallel to the velocity gradient, the veloc
and the vorticity direction, respectively. Symbols denote exp
mental results, the straight lines represent the analytical results,
~51!, ~52!, and~53! with the replacementSi→Si

eq(h).
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MAGNETIZATION DYNAMICS, RHEOLOGY, AND AN . . . PHYSICAL REVIEW E66, 021501 ~2002!
in the present model. For strong magnetic fields,h*10, the
simulation results are well described by Eqs.~26!–~29! if the
values of the order parameters and director components
extracted from the BD simulation. For weak magnetic fiel
h&1, we observe that the shear viscosityhb becomes lower
than the zero-shear value,hb,h0,r . This so-called ‘‘negative
viscosity’’ effect @1# has so far been observed only in osc
lating magnetic fields, while the present model predicts t
effect also for sufficiently high shear rates, Pe´.1, and weak
magnetic fields,h,1. Note that it is difficult to fulfill the
condition Pe´.1 experimentally since most ferrofluids sho
relaxation times of the order of 1024 s @1#. However, using
high-viscosity carrier fluids, relaxation times of the order
10 ms can be achieved~see, e.g., Ref.@34#!, so that shear
rates of the order of 100 s21 would be sufficient to satisfy
Pé.1. For weak magnetic fields, the agreement is not
good as for strong magnetic fields and becomes worse
increasing Pe´. In this regime, it is expected that the assum
tion of uniaxial symmetry does not hold. For the highe
Péclet number simulated, Pe´510, the results from Eqs
~26!–~29! for h51 disagree with simulation results by a fa
tor of 2.

Figure 8 shows Brownian dynamics results of the first a
second normal stress coefficientN1 ,N2 as a function ofh for
the same flow situation with Pe´50.5. We observe thatN1 is
negative, with a minimum value roughly aroundh'5. The
second normal stress coefficientN2 is found to be positive,
N2!uN1u, and only weakly dependent on the magnetic fie
h. Also shown are the semianalytical results for the case
uniaxial symmetry, calculated from Eqs.~A4! and~26!–~29!
with the valuesSi taken from the Brownian dynamics simu
lation. We observe from Fig. 8 that the agreement betw
these results is satisfactory and improves for increasingh.

In order to further discuss the validity of the assumpti
of uniaxial symmetry made in Sec. III, we define the direc

FIG. 7. Viscosity change (hb2h0,r)/2h0
f as a function of Pe´ for

plane Couette flow. The magnetic field is oriented in the grad
direction. The value of the magnetic field ish510 andh51 for the
upper and lower curves, respectively. Symbols correspond to
simulations, while solid lines represent the semianalytical res
Eqs.~26!–~29!, where the values of the order parameters and co
ponents of the director are extracted from the BD simulation.
02150
re
,

is

f

s
or
-
t

d

of

n

r

n by ^u&5S1n, Eq. ~E1!. In the literature, there exist sever
measures for deviations from uniaxial symmetry. Here,
use the biaxiality parameterb defined in Ref.@35# as a func-
tion of the scalar invariants of the alignment tens
^uu&, i.e., b25126I 3

2/I 2
3 with I 2[^uu&:^uu& and I 3

[(^uu&•^uu&):^uu&. One hasb50 in the case of uniaxia
symmetry whileb reaches its maximum valueb51 in the
case of planar biaxial symmetry. Figure 9 shows Brown
dynamics results of the biaxiality parameterb as a function
of h corresponding to the same flow situation and the sa
Péclet number as in Fig. 8. We observe from Fig. 9 thab
rapidly decreases with increasingh, thus explaining the good
agreement between the analytical results based on the
sumption of uniaxial symmetry and the Brownian dynam
simulation forh@1. It is interesting to note that the agre
ment between Brownian dynamics simulation and analyt
results for uniaxial symmetry agree fairly well even forh
'1, where deviations from uniaxial symmetry do occur,
shown in Fig. 9. A similar situation was already encounte
for the special case of spherical particles, where a deta
analysis showed that biaxial corrections to the uniaxial
proximation were found to be small, even if the parameteb
approaches values close to one.

VI. CONCLUSION

In the present work, the relationship between the kine
model of dilute suspensions of rigid, ellipsoidal, ferroma
netic particles and the Ericksen-Leslie theory of nematic
uid crystals is established in Sec. III. It is found that f
uniaxial symmetry, the predictions of the kinetic model f
the stress tensor are of the same form as in the Erick
Leslie theory. A complete set of viscosity coefficients is o
tained as a function of the orientational order parameters
the limit of small Pe´clet numbers, the viscosity coefficien

t

D
lt,
-

FIG. 8. Normal stress differencesNi /2h0
f , with i 51,2, as a

function of reduced magnetic fieldh for plane Couette flow. The
magnetic field is oriented in the gradient direction. The Pe´clet num-
ber is Pe´50.5 and the axis ratio was chosen asr 55. Symbols
indicate results of Brownian dynamics simulation~circles: i 51;
squares:i 52), while solid (i 51) and broken (i 52) lines corre-
spond to the result of the uniaxial approximation.
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PATRICK ILG AND MARTIN KRÖGER PHYSICAL REVIEW E66, 021501 ~2002!
reduce to explicit functions of the magnetic field. For t
special case of plane Couette flow, the Miesowicz visco
coefficients, the alignment angle, and the normal stress c
ficients are obtained in Sec. III C.

Predictions of the kinetic model are compared in Sec.
to the form of the magnetization and stress equation der
within a thermodynamic framework in Ref.@10#. Within the
so-called effective field approximation, the magnetizat
equation derived from the present kinetic model is a spe
case of the previous result, while the stress tensor obta
from the kinetic model generalizes the expression given
Ref. @10# due to viscous contributions. Recent experimen
results@11# for the coefficientl2 occurring in the magneti-
zation equation are interpreted within the present kine
model.

Brownian dynamics simulation of the full kinetic mod
in plane Couette flow were performed in order to discuss
validity of the assumption of uniaxial symmetry, and thus t
assumption made to proceed with the effective field appro
mation. It is found that the viscosity coefficients are in go
agreement with the results of the uniaxial approximation,
Eqs. ~26!–~29!, ~30!. The agreement is enhanced for stro
magnetic field, resp. low Mason numbers Mn!1. We stress
that this agreement does not imply the actual distribut
function to be almost uniaxially symmetric. Indeed, even
large values of the biaxiality parameter, indicating strong
viations from uniaxial symmetry, the moments that are r
evant for the stress tensor are still rather well approxima
by the uniaxial expressions.

The derivation of the viscosity coefficients within th
uniaxial assumption is not unique. We provide also a seco
nonequivalent set of viscosity coefficients that satisfy P
odi’s relation. Only in the limit of strong magnetic fields d
these sets of viscosity coefficients coincide. The Brown
dynamics results reveal that the agreement is better for
first set of viscosity coefficients@Eqs. ~26!–~29!, ~30!# than
the second@Eqs. ~42!–~45!, ~30!#, that satisfies Parodi’s re
lation. Thus, violations of uniaxial symmetry by the kinet

FIG. 9. Biaxiality parameterb, defined in Sec. V, as a functio
of reduced magnetic fieldh for plane Couette flow with Pe´51.0.
Circles, squares, and diamonds correspond to the magnetic
being oriented in gradient, flow, and vorticity direction, respe
tively.
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model seem to be better approximated if the assumption
uniaxial symmetry is imposed on the form~18! of the sym-
metric stress tensor than on the definition~6!.

Polydispersity effects and dependence of the size of
agglomerates on the magnetic field should be taken into
count for improved comparison with experimental results
ferrofluids. We mention that the present approach can ea
be extended to include a field-dependent size of particler
5r (h) and polydispersity effects by subsequent averaging
the present results over values of axis ratiosr. Following the
approach of Ref.@15#, the stress tensor in the uniaxial pha
is still given by Eqs.~A1!, where the Leslie coefficientsa i
given by Eqs.~26!–~29! are replaced by their average valu
ā i . The averages are performed over all integer values
axis ratios, reflecting the assumption of cylindrical agg
gates of identical spherical particles@15#.
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APPENDIX A: DIRECTOR THEORY

We here summarize the basic equations of the Ericks
Leslie continuum theory of anisotropic incompressible flu
with variable internal degree of alignment. The basic
sumptions of the classical Ericksen-Leslie theory of nema
liquid crystals@18,23# are that the internal structure is de
scribed by a unit vector fieldn(x;t) ~called the director! and
that the stress tensorT is a linear function of the symmetric
velocity gradient 2D[“v1(“v)T and the corotational de
rivative of n, N[ṅ2V3n, where 2V5“3v is the vortic-
ity of the flow,

T5a1~nn:D!nn1a2nN1a3Nn1a4D1a5nn•D

1a6D•nn. ~A1!

In the absence of body forces, the balance of linear mom
tum reads

rv̇52“p1“•TT, ~A2!

wherer denotes the density of the fluid andp the pressure.
Neglecting director inertia and surface stresses, the directn
obeys the balance equation

05~12nn!•@hn2g1N2g2D•n#, ~A3!

wherehn is the external director body force.
It is useful to decompose the stress tensorT into its sym-

metric and antisymmetric part,T5T s1T a, where

ld
-

1-14
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T s5a1~nn:D!nn1
1

2
~a21a3!~nN1Nn!1a4D1

1

2
~a5

1a6!~D•nn1nn•D!, ~A4!

T a52
1

2
g1~nN2Nn!2

1

2
g2~nn•D2D•nn!.

The viscosity coefficientsa i are commonly known as Lesli
coefficients. The coefficientsg i are related toa i by

g15a32a2 ,

g25a62a5 . ~A5!

In the Ericksen-Leslie theory, the six viscosity coefficien
remain undetermined phenomenological parameters,
stricted only by dissipation arguments@36#,

a4>0, g1>0, ~A6!

2a41a51a62g2
2/g1>0. ~A7!

APPENDIX B: ROTARY FRICTION COEFFICIENT

The exact original result for the rotary friction coefficie
z rot of a single prolate (r .1) ellipsoid is@37#

z rot58phsa
3er , ~B1!

with

er5
2

3 S 12
1

r 4D F 2r 221

2rAr 221
lnS r 1Ar 221

r 2Ar 221
D 21G21

.

~B2!

In terms of the geometric coefficientsB and Q0 defined
below the dimensionless factorer that occurs due to asphe
ricity of particles, can be expressed as

er5
5

3

Q0

B
. ~B3!

For slightly deformed spheres with axis ratior 511e and
e!1, one gets

er512
9

5
e1

1089

350
e21O~e3! for r 511e, ~B4!

while the opposite limit,r @1, gives

er5
2

3@2 ln~2r !21#
for r @1. ~B5!

The latter expression~B5! represents a good approximatio
already forr *2.

APPENDIX C: GEOMETRIC CONSTANTS

The geometric coefficientsQi depend only on the axis
ratio r of the ellipsoid and are given explicitly by@20#
02150
e-

Q05
2~r 221!2

5r 2~2r 2b2b21!
,

Q15
4~r 221!2

5r 2~3b12r 225!
,

~C1!

Q25
2Q1

3 F12
2r 2112~4r 221!b

4~2r 211!b212
G ,

Q35Q1F @r 2~b11!22#~3b12r 225!

4@b~2r 221!21#~r 21223r 2b!
21G ,

and

Q23[3Q214Q3 , Q32[Q32Q2 , ~C2!

for convenience, where

b5
1

rAur 221u
3H cosh21r for r .1,

cos21r for r ,1.
~C3!

In Refs.@1,15#, a different notation for the coefficientsQi is
used,bn55fQ0 , an55fQ1 , zn55f(2Q32BQ0), xn5
25f(Q2322BQ0), ln5B, andn5r .

In order to reobtain the results for spherical unitsr 51
from this manuscript, one just setser51, B50, Q0,2,3,23,32
50, andQ151/2 @the latter is not obvious at first glanc
from Eq. ~C1!, see also Eq.~D1! for the case of slightly
deformed spheres# in all equations~we omitted the appear
ance ofQ0 /B terms therefore!, or visit our foregoing work
@19# as an alternative.

APPENDIX D: SLIGHTLY DEFORMED SPHERES

For slightly deformed sphere with axis ratior 51
1e, e!1 one findsB5e and for the geometric coeffi
cientsQi up to O(e2):

Q05
3e

5
2

9e2

50
, Q15

1

2
2

e

7
1

47e2

294
,

Q252
2e

7
1

e2

21
, Q35

3e

14
2

13e2

2940
. ~D1!

Consequently, the Leslie viscosity coefficients~26!–~29! are
given to lowest order ine as

a1522h0
f 92e2

735
S4 ,

a21a3524h0
fF3e

5
2

9e2

50 GS2 , ~D2!

a422h0,r54h0
fF e

7
S22e2S 51

3430
S22

92

25725
S4D G ,
1-15
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a51a652h0
fF6e

7
S22e2S 153

1715
S22

368

5145
S4D G ,

with the zero-shear viscosity h0,r 511e5hs1h0
f(1

152e2/175). In the limite→0, the viscosity coefficientsg1

and g2 are given by Eq.~30! with G[nkBT/Dr5h0
f@12/5

218e/25#.

APPENDIX E: MOMENTS FOR THE UNIAXIAL PHASE

Considering uniaxial symmetry of the orientational dist
bution function~21!, its first moments are expressed in term
of a directorn and scalar order parametersSi defined in Eq.
~21!:

^u&5S1n, ~E1!
.

02150
^uu&5S2nn1
12S2

3
1, ~E2!

^uuu&5S3nnn1
S12S3

5
~1n!sym, ~E3!

^uuuu&5S4nnnn1
S22S4

7
~1nn!sym

1
7210S213S4

105
~11!sym, ~E4!

where subscript sym denotes symmetrization in all indice
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