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The rheological properties of a dilute suspension of ellipsoidal ferromagnetic particles in the presence of a
magnetic field are studied on the basis of a kinetic model, where the flow and magnetic external fields couple
in qualitatively different ways to the orientational behavior of the suspension. In the uniaxial phase the stress
tensor is found to be of the same form as in the Ericksen-Leslie theory for nematic liquid crystals in the steady
state. Expressions for a complete set of viscosity coefficients in terms of orientational order parameters are
worked out. In the low Reet number regime, the viscosity coefficients are given as explicit functions of the
magnetic field and a particle shape factor, where the shape factor may equally represent a nonspherical unit
(agglomerate, chajrcomposed of spherical particles. Effects due to possible flow-induced breakup of units are
not covered in this work. Further, by considering the magnetization as the only relevant variable, a magneti-
zation equation within an effective field approach is derived from the kinetic equation and compared to existing
magnetization equations. The alignment angle of the magnetization and the first and second normal stress
coefficient are studied for the special case of plane Couette flow. The assumptions employed are tested against
a Brownian dynamics simulation of the full kinetic model, and a few comparisons with experimental data are
made.
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[. INTRODUCTION suspension of ellipsoidal ferromagnetic particles in a field
are scantily explored,” p. 281 of Reff1]. Very recently, the
Ferrofluids are colloidal suspensions of nanosized ferrokinetic model of ellipsoidal ferromagnetic particles was ex-
magnetic particles in a carrier liquid]. Various technical tended in Refs[15,16 to include also polydispersity effects.
applications use the fact that the rheological behavior of fer- In the present work, we consider a Fokker-Planck equa-
rofluids can be manipulated by external magnetic fieldstion approach17] applied to the orientational dynamics of a
While the rheological behavior of dilute ferrofluids is rather suspension of rigid, noninteracting, ferromagnetic ellipsoidal
well understood, most commercial ferrofluids are more coneobjects whose magnetization is parallel to the bodies sym-
centrated and show deviations from the behavior in the dilutenetry axis, and work out its explicit relation to the Ericksen-
regime[2,3]. In particular, the kinetic model of internal ro- Leslie theory of nematic liquid crysta[48]. Five indepen-
tations of noninteracting, spherical ferromagnetic particleslent viscosity coefficients describe the magnetorheological
introduced in Ref[4] successfully describes the rotational homogeneous fluid. Their dependence on the orientational
viscosity of dilute ferrofluids but is unable to account for order parameters, the shape and concentration of the ferro-
various flow phenomena in commercial ferrofluids, such as anagnetic units, and the solvent viscosity is worked out in
dependence on the symmetric velocity gradient, shear thirdetail. The Miesowicz viscosities, tumbling parameter, nor-
ning, and the occurrence of normal stresse®, e.g.[2] and  mal stress differences, and, e.g., the rotational viscosity in-
references therejn crease, are related to combinations of these viscosity coeffi-
Recent years have seen intensive experiméBtél6] in-  cients. In case of low Réet number, explicit expressions for
vestigations of rheological properties of semidilitemmer-  the coefficients, in terms of the magnetic figld favor of
cial) ferrofluids subjected to an external magnetic field. Thethe order parameterare given and compared to previous
oretical approaches to the dynamics of ferrofluids based oresults. Rheological properties due to possible flow-induced
thermodynamic considerations have been proposed in Refbreakup of units are not covered in this work, but should be
[7-10]. Very recently, one coefficient appearing in the gen-approximately obtained by superposition of the stated results
eralized magnetization equation proposed in R&€] has for a given, yet unspecified, transient distribution. This work
been determined experimentally/1]. generalizes earlier results on the Fokker-Planck equation
Extensions of the kinetic modé#] to dilute suspensions specialized to spherical ferromagnetic partidl&8], where
of ellipsoidal ferromagnetic particles have been proposed ithe effect of flow alignment of particle axes is not present.
Refs.[12—14. Theoretical studiegl2,13 investigate the ini-  While uniaxial symmetry was the only assumption made so
tial part of the flow curve while Brownian dynamics simula- far, we use the stronger assumptions of the effective field
tions are performed in Ref.14]. Nevertheless, until five approximation in order to derive a closed magnetization
years ago, “The peculiarities of a rheological behavior of aequation from the Fokker-Planck approach and discuss its
relation to previous results. We also interpret the experimen-
tal result obtained in Refl11] for the tumbling parameter
*Corresponding author. Email address: ilg@physik.tu-berlin.de within the present kinetic model, and thereby conclude on
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the nonspherical shape of ellipsoidal ferromagnetic unitgradient tensor and the vorticity are related to these quanti-

present in the sample. The validity of the presumption ofties by D=(Vv+[Vv]")/2=|Vov|D, and Q=(V xv)/2
uniaxial orientational symmetry made in the first part of this:”Vv”Q respectively, wheréVo| denotes the norm of the
manuscript is finally tested against results obtained from a ' '

Brownian dynamics simulation of the full kinetic model in VelOcity gradient, such thatVo||=y for a shear flow with
plane Couette flow. It is found that all viscosity coefficients shear ratey. In Eq. (1), the Pelet number is introduced,
are in good agreement with the results of the uniaxial apPe=7{Vv|, which measures the relative importance of vis-
proximation. The agreement is enhanced for strong magnetieous and Brownian forces on the particle orientation.
field, resp. low Mason numbers. We stress that this agree- In order to interpret the results in terms of measurable
ment does not imply the actual distribution function to begquantities, we explicitly consider EL) to hold for ellipsoi-
almost uniaxially symmetric. Indeed, even for a large clasglal ferromagnetic units with positive axis ratio=a/b,
of biaxial orientational distributions the moments that arewhere each unit is composed bf ferromagnetic spherical
relevant for the stress tensor are still rather well approxiparticles(molecular substituents of the unif\ccordingly, r
mated by the uniaxial expressions. This finding actually mois restricted byN through N""?<r<N, andr=1 andr
tivated our analytical treatment of the uniaxial phase to be=N correspond to spherical and cylindrical units, respec-
presented in Sec. III. tively. In Eq. (1), B=(r?—1)/(r?+1), andN=1 impliesr
This paper is organized as follows: In Sec. Il, the kinetic=1. Spherical units correspondBo=0. In that case, Eq1)
model of internal rotations of rigid, ferromagnetic, ellipsoi- reduces to the kinetic equation for dilute ferrofluids given in
dal units is introduced and some of its properties are disRefs.[1,4]. The relaxation timer depends on the number of
cussed. The relationship between the kinetic model and theubstituentsN and axis ratiar via
Ericksen-Leslie theorysummarized in Appendix Ais estab- —eN 3)
lished in Sec. Ill. Comparison of the present approach to the T=ENTL
result; of Ref[10] is made in Sec. IV as vyell as an inter- where 7= 7(N=1)=37w, /ksT is the relaxation time for
pretation of the experimental results obtained in R&d]. an individual sphere with volume, suspended in a New-

For the special case Of. plane Coueltte flow, the alignme nian solvent with viscosityys. The dimensionless shape
angle of the magnetization and the first and second norm befficiente, >0 as a function of is given in Appendix B.

stress Qoefﬁcients are ;tudied in Sec. IlIC. Finally, SOMEH e hase, =1 for spherical units and should use, eegto

conclusions are offered in Sec. V1. describe cylindrical units. Using the above notation, number
densities and volumes are related byn;/N, v=Nuvq,

Il. KINETIC MODEL however, concentratiogp=nv and the producteiw, nh to
Consider an ensemble ninoninteracting, identical, rigid, aPPear in the stress tensor remain unaffected by attaching a

ferromagnetic ellipsoids per volume. We assume the systerfubscript 1 to all quantities. The relaxation tineof the

to be spatially homogeneous, so that the state is described §j}ipsoidal unit is related to its rotary diffusion coefficieDt

the probability distribution functiorf(u;t) of an ellipsoid and its rotary friction coefficient, (see also Appendix B

being oriented in the direction of the unit vectomt timet. ~ Via D; '=27={,//kgT. Since the ellipsoidal unit is consid-

Furthermore, it is assumed that the symmetry axis coincidegred as agglomeration of individual spherical partigies]

with the direction of the magnetization of the particlgs, —€ach with magnetic momept;, the magnetic moment of the

= wu. The motion of a single ellipsoid is influenced by ro- €llipsoid is u=Ng;, i.e., h=Nh;. The Mason number Mn

tational diffusion, motion due to an external potentialand ~ =Pe€h, to be used below, is related to the corresponding

the hydrodynamic drag caused by velocity fieldThe dy- ~Mason number Mpfor a fluid of individual spherical par-

namics is conveniently described by the kinetic equatiorficles by Mn=e,Mn;.

[1,17,20 The hydrodynamic stress tensbrfor an incompressible
dilute suspension of rigid ellipsoidal particles can be decom-

r&tfz—Péc-[(fl+Bu><'I3~u)f]+E£-fL',[Inf+V/kBT], posed into it_s symme_tric and antisymmetric part, see Eq.

2 (A4). The antisymmetric part reads

(o
n
where the potentiaV/ for a magnetic momeng= wu in the To=5e(LV), 4
local magnetic fielH is given by
-V A with the conventional total antisymmetritevi-Civita) ten-
ﬁ:kB_TH -u=hh-u=h-u. (2) sor e of rank 3. Here and below, we use the following nota-
B

tion for averages of arbitrary functio®s u) with respect to

Here, the dimensionless magnetic fiéler wH/kgT, its am- the distribution functior:

plitude h (Langevin parametgrand the unit vectoh point- B 5 _
ing in the field direction are introduced. In E€L), £=u (A)= Szd UA(WT(uit), (5
XV, is the rotational operator witN, being the gradient on

the unit sphere. The dimensionless quantibeandQ char- where the integration is performed over the three-
acterize the flow geometry. The symmetric part of the flowdimensional unit sphere. For convenience of notation the ex-
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plicit dependence dfon time is frequently suppressed in the
sequel. The symmetric part of the stress tensor reads, accord-

ing to[1,20,21,

T°=27{1+5¢Q1)D+57:¢{(2Q3~BQo)(D-(uu)

+(uu)- D)~ (Qp3—2BQq) D:(uuuu)} + TP,

wherez;is the shear viscosity of the Newtonian solvent. The
geometric coefficient®; are defined in Appendix C and the

potential contribution is given by

PHYSICAL REVIEW E 66, 021501 (2002

B. Approach to equilibrium

In the absence of a flow field, Eql) yields a unique
equilibrium statef.,. The approach to equilibrium is moni-
tored by the dimensionless free energy functional per par-
ticle,

F[f]=dezuf(u)ln[f(u)/feq(u)]. (12)

In terms ofF, the kinetic equatioril) can be rewritten as

nkgT
TPolm 2 B([uVu+(Vuu)T](In f+V/kgT)). L - 1 SF[f]
2 rof = —PeC-[(Q+BuxD-ufl+5L fL——,
Inserting the potential2) into Eq. (4) one obtains (13
Ta:nkBT(h<u>_<u>h)_ (8)  Where/5f denotes the Volterra functional derivative. The
2 time rate of change of the free energy functiofap) is
_ . . o , _given by
Similarly, inserting the potentigR) into the potential contri-
bution to the symmetric stress tensor, Ef, gives 1 1
- 1+ Q0 pot N7 _—
nkgT 7F nkBT[t Q+TPtD] 2(52), (14)

POl B[6(uu)— ((uyh+h(u))+2(uuu)-h]. (9)

2
_ where we used Ed1) and introduced quantitie§ ands by
where uu=uu—(1/3)1 denotes the(symmetri¢ traceless T 2=e-t?ands=L(5F/5f). In the absence of flow, E¢14)
part of uu. proves that the free energy function@P) is nonincreasing,
F<0, due to the dynamic&l), with F=0 in equilibrium.
A. Equilibrium and stationary state In the presence of a steady potential flow, the same argu-
Stationary solution to Eq1) in the absence of flow are of Ments can be applied to the functiorkal, that is obtained by

the canonical fornf exp(—V/ksT). For the potential2), replacing the equilibrium distribution functidn,in Eq. (12)
f, takes the form a by the steady state distributid, given by Eq.(11).

feq(u)zLexp(h-u), (10

. C. Moment equations
44 sinh(h)

From the kinetic equatioril), the dynamics of theth
with the Langevin parametér. Equilibrium momentgA),, ~ moment(u,, - --u,,) is obtained,
are defined by Eq5) with f replaced byfeq. The equilib-

; TSR N 79U, -+ - U,
rium magnetization isMgq=nu(U)eq=nulL(h)h, where ) 1 k

L(x)=coth)—1/x is the Langevin function anfi=h/h is ] ko K
the unit vector parallel to the magnetic field. This equilib- =—Pe Qaemj,g UBH Ug,
rium magnetization is the classical result for a system of =1 'iijl

noninteracting magnetic dipoles.

For later use, we provide the magnetic susceptibility in
equilibrium, which is given byy,z=nkgT xo6,5 With xq
=nu?/(3kgT).

The stationary solution to Eql) in case of steady poten-
tial flow, =0, can also be found explicitly,

fs(u)zgexp(h~u+ PeBD:uu), (12)

portance of viscous and magnetic forces. BMn<1, fg
~feq, While for BMn>1, f is independent of the magnetic
field and determined completely by the flow. Accordingly,
fs=feq holds strictly for spherical particles and also in equi-
librium (Pe=0).

wherez is a normalization factor. One may define the Mason Ji>:I < P4
number Mn as MePeh, which measures the relative im- K
<H uai> : (15

The equation for the first momerk=1, is therefore
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rd(u)y=Pedx (u)+ PeB((1—uu)u):D—(u)

1
+ z(l—(uu))-h (16)

and for the seconk=2,

rd(uu)=PgW- (uu)— (uu)- W) + PeB[D- (uu) + (uu) - D
—2D:(uuuu)] - 3¢uu) - h- (uuu)
1
+5 (h(u)+(wh), 17
whereW=e- Q.

Using Eq.(17), the explicit contribution of the potentid
to the symmetric stress tens@) can be eliminated20],

T5=271+5¢Qy)D+5756{2Qs(D- (uu)+(uu)-D)

— QasD: Uttty + Qo W- (ut) — (uu)- W dy(uu) ).
(19

Similarly, with the help of the moment equati¢b6), the

explicit dependence on the potential can be eliminated from

the antisymmetric stress teng@), h=11"1- a, with

a= 7d,(u)— Pel2 X (u)— PeB[ D (u)— (uuu): D]+ (u),

where II"? denotes the inverse of the matriki=(1
~(uu)). ,

In the absence of potential forces and for—P@, the
steady state stress tensbireduces tol =27,,D, with the
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Ill. RESULTS FOR UNIAXIAL SYMMETRY

In order to obtain more explicit expressions for the stress
tensor and the viscosity coefficients, we here propose to con-
sider the class of uniaxial distribution functions. This ap-
proach was applied successfully in REI9] to dilute sus-
pensions of spherical ferromagnetic particles. In the present
case, in analogy to Ref20], further manipulations are based
on the expression&3) and (18) for the antisymmetric and
symmetric part of the stress tensor. It should be mentioned
that alternative and nonequivalent approaches for deriving
viscosity coefficients within the uniaxial assumption are pos-
sible. For example, using this assumption for the formulation
(6), (9), and(18) of the symmetric stress tensor yields differ-
ent results which, for comparison, are presented in Sec. 11 B.
By comparison with numerical simulations of the full kinetic
model, however, use of the results in Sec. IlIB is discour-
aged, while those presented in the following section show
rather good agreement.

Uniaxial symmetry of the distribution function with re-
spect to the directorn is defined here asf(u;t)
=f m(u-n;t). Thereforef has the representation

©

Llnl( u- n 2

> 5 @

+lSP(u ny,

with the scalar order paramete8s=(P;(u-n)), andP; are
Legendre polynomials. The moments of the distribution
function (u),(uu), etc., can be expressed in terms of the
directorn and the order paramete8 (expressions are col-
lected in Appendix E The S; are bounded, €S,<1 and
—1/2<S;<1 for j>1.

In particular, the equilibrium distribution, E¢10), shows

zero-shear viscosity of a dilute suspension of magneticallyiniaxial symmetry around the direction of the magnetic field,

neutral ellipsoidal particleg&xis ratior),
Moy = NsT 773} )

0r=?15Q1+(2Q3—Q2)} s,

—nd=ng 1= ¢7is (20)

Einstein’s formulazny=no,-1=(1+5¢/2)ns is recovered
from this expression for spherical particiege Appendix €

Results for the viscosity coefficients below will be related to
the concentration-induced increase of the zero-shear-rate vis-
cosity 7735 for spheres i.e., we eventually use the identities
NZo=2nkgT7=(127¢/5)e, in order to make the depen-

n®=h. In the equilibrium state, the orientational order pa-
rametersS’=L;(h) can be calculated explicitly as a func-
tion of the magnetic field,

lj112(h)

WOR 22

Lj(h)E<Pj(u'n)>eq:

wherel; 1/, is @ modified spherical Bessel functih]. The
functionsL;(h) satisfy the recursion relation

2j+1

Lj+a(h)=Lj-1(h)=——L;(h), (23

dence on shape evident. We generally omit the second indexith Lo=1 andL,(h) is identical to the Langevin function

r for quantities, ifr=1

Due to the hydrodynamic drag and the magnetic field, thesions for the equilibrium moments, given, e.g.,

equation for the moment of ordds Eg. (15), couples to
moments of ordek+ 1 andk=2 (k=0). Therefore, a finite

L(h). In equilibrium, Egqs(E1)—(E4) reduce to the expres-
in Haf.
For spherical particles, we have shown in RéD], that
the assumption of uniaxial symmetry leads to very accurate

set of closed equations for the macroscopic magnetizatioresults also out of equilibrium, even if the actual distribution
and the macroscopic stress tengorcannot in general be function is not strictly uniaxial symmetric. The validity of
derived from the kinetic model unless some approximationghe assumption of uniaxial symmetry for nonspherical par-
are invoked. ticles is discussed in Sec. V.
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Inserting relationgE1)—(E4) valid in the uniaxial phase [Eq. (B3)]. While e,_;=1, for an axis ratio ofr =10 we
into Eq.(16), the following time evolution equations for the predict an increase ity; by about 800%.
orientational order paramet&; and the balance equation for ~ For later use, we provide the ratio of the coefficiepts
the director are obtained:
Y2 B(35,+2S;)

.3 2 MET O T Bs (3D)
$1=5B(S;=S3)(D:nn) = 2D, S+ 3D (1= S)(h-n), (24) " 1

As will be discussed in Sec. Il G\ <1 implies director

3S; 3(3S5,+2S3) tumbling in steady shear flow, whila|=1 implies the ex-

(1=nn)-|Dih— 5= s B 52+rsy O =0. (29  istence of a steady solution if the magnetic field is absent.
From Eg.(24), also the angle> between the direction of
From Eqs(E1)—(E4),(18), the symmetric stress tens@  the magnetic field and the magnetization can be calculated,
is found to be of the form(A4) assumed in the Ericksen-
Leslie theory if the viscosity coefficients are identified with —f.n 3S, 3B(S,-S3) . ~ .

(see also Ref[20]) TTh(I-Sy o 5S; PeD:n

(32

a1=—27§Q2S;, (26)
Equation (32) generalizes the corresponding result for
ar+ az=—473Q,S,, (27)  spheresB=0, obtained in Ref[19]. The additional term is
responsible for the flow alignment of nonspherical particles.

2 3
_ — a9 = _
Ay 27/o,r— 4mnq 7QS252Jr 35Q23S4 ’ (28 A. Small Peclet number

In the low Pelet number regime Rel, the order param-

16 vl .
ac+ar=— 1?3 +0,.5,]. (290 etersS may be replaced by their equilibrium valuggd.
5+ 6= 35 ol 3QazSz + QaaSal Thus, the alignment angle, given by Eq.(32), becomes

Equation(25) is of the general form of the balance equation o 3BL,(h)
for the director assumed in the Ericksen-Leslie the@g). Cose =111 () PgD:nn), (33
The viscosity coefficienty, and y, can be extracted from

Eqg. (25 only up to an undetermined factor that relates theange°—.0 as Pe-0. As expected, a perfect alignment of the
magnetic fieldh with the external director body forck,  direction of magnetization with the magnetic field is ob-
appearing in the Ericksen-Leslie thed#3). However, in- tained in this regimen=h

serting Egs(EY), (E2), (E3), and(16) into the antisymmetric . .
stress tenso(8), we recover the Ericksen-Leslie form for? The corresponding form of the stress ten6bl) with n

(A4) with the viscosity coefficients I[=127ge,/5 =h reads
=67sfer) TO= (AR D)AR+ adfN+ aONA+ aDalff- D+ a2D- Af
L 382 - 3S,(3S,+2S,) @0 (34)
nTl2rs, 2 5(2+Sy) and has been obtained previously in Réfi2,13 from the

kinetic model(1) in the limit Pe—0. The viscosity coeffi-
cientsa? are obtained from Eqg$26)—(30), by replacingS
with their equilibrium valueSeq,

For spherical particlesB=0,e,=1, we recover the result
obtained in Ref[19]. Equation(30) introduces also the vis-
cosity coefficienty,, which is absent in the kinetic model
introduced in Ref[4]. In the context of molecular liquids -~
and in liquid crystals, this term is known to be resp?)nsible =~ 27Qu34(h), 39
for the flow alignment phenomend@2,23. In case of ran-
dom alignment,S;=0, we find no contribution to the anti-
symmetric stress tensoy; =0, while in the opposite limit of 5 1
perfect alignmentS;=1, the maximum valueg;=1" and 0_ - 4{_ 4+ }
v»,=BT are attained. Comparison of Eq&5) and(30) with @4~ 20, =~ 46| 7 Quid-2(N)+ 35 Qzaba(N) |, (37
Eqg. (A3) allows us to identify the director body forcé,
=n kBTS_lh

Note that the parameteks, and vy, given by Eqs.(28)
and(30), are positive as required from dissipation arguments
(A6). The parametersy; and vy; also obey the restriction For the viscosity coefflments/l a3 az and 72 ae ag

aj+ad=—43§QoL,(h), (36)

Ls(h )} 39

0, 0.8 4
astag==17p 2Q3L2(h)—2Qy3

(A7). we find

According to our result stated in E¢30), the enhance- 5
ment of the the rotational viscosity for nonspherical units is O_T hL=(h) (39)
just given by the quantitg, characterizing the shape alone LE - L(h)’
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FIG. 1. Reduced rotational viscositie@/l’ and 7(2’/(81“), given by Egs(39) and(40) as a function of the dimensionless magnetic field
(Langevin parametgh= uH/kgT and axis ratiar of the ellipsoid.

0 L(h)[(6+h?)L(h)—2h] S—1, i.e.,h—x. Note, that in this regime the assumption
Y.=—IB hCh=L(N)] : (400 of uniaxial symmetry is most likely valid.

The violation of Eq.(41) for finite h might be considered
as a drawback of the preceeding approximation. Although

. . one should remember that the assumption of uniaxial sym-
Refs.[12,13 differ, however, from these results. As pointed metry is in general not satisfied strictly by the underlying

out in Ref.[13], viscous contributions to the stress tensor A inetic model. The violation of Parodi’s relation stems from

nel?leﬁteoll dm Rteg[12] andttr:jeréfore ag_reemezé W'fh tzé.‘t '€ the different treatment of the symmetric and antisymmetric
sult should not be expected. Expressi¢a)—(40) also dis- stress tensor in the above derivation: the first-moment equa-

agree with the result in Ref13], which were obtained with tion is used for the formulation of the antisymmetric stress

the help of an ansatz for the linearized, stationary d'Str'bu’[ensor and the second-moment equation for the symmetric

t!on function in thg limit p(.%O' In case of spherical par- stress tensor. Since we require the limit of spherical particles,
ticles, the expressiofB9) with T'=67s¢ was already de- g_ '+ pe given byy,, Eq. (30) in accordance with previ-

r|ved n R_ef.[,4] and fognd to agree with the exact EXpression;, o resultg4], Parodi’s relation can be preserved if the first-
in the limit Pe—0 within 3%[24]. However, comparison to moment equation is considered only and no use of EB).is
the tabulated values af in Ref.[13] yields discrepancies of made. If the magnetic field is eliminated from E§) with
the order'lo%. Thgrefore, no further comparison to results g, help of Eq(19), the resulting stress tensor is given by the
Ref.[13] is made in the sequel. 0 o0 Ericksen-Leslie form(A4) with an additional termgnn.

In Fig. 1, the viscosity coefficientsy, y,, given by Eqs.  gjnce g0 for Pe<1, the original Ericksen-Leslie form
(39) and(40), are shown as a function of the magnetic field (a4 is restored for small Riet numbers. The coefficients
h and the axis ratio of the e||ipSOid The CoeffiCiel‘IISy?, 'yg v1,7Y, are again given by EC(BO) The coefficients appear-

are normalized by their maximum values. From Fig. 1 it ising in the symmetric stress tensor differ, however, from Egs.
seen that the values of the viscosities increase with increagge)—(29),

ing r, the limitr — 1 corresponding to the result for spherical
particles. 2

The expressions for the viscosity coefﬁcien;%given in

3_ B
o=~ 27§(Qas2BQ0)Si~ 5T 55| Ss(351+2Sy)
B. Parodi’s relation and an alternative set of viscosity
coefficients 3(S,—S3)
For small Pelet numbers, the stress tensbiis a linear +10(1—Sz) (105:-95,5, 8283)} (42)
tensor function of the symmetric and antisymmetric velocity
gradient, given by Eq.34). Employing Onsager’s reciprocity P p
relation, the matrix providing the linear relation between the aytaz=7y,, (43
stress tensor and the velocity gradient is assumed to be sym-
metric. In the present case, this relation is known as Parodi’s 4 1
relation[23], ag=216,=7 78 <2Q32+BQ0>SZ+§<Q23—ZBQO>S4},
ad+ad=199. (41 (44)

The validity of Parodi’s relation in the description of liquid- b p 4 :

crystalline polymers has frequently been discussed in the lit- @5+ as== 75 3(2Q32~BQp) S+ 2(Q23~ 2B Qo) Sy
erature[20,23. From Eqs.(36) and (40) it is seen that Par-

odi’s relation is not satisfied identically except in the limit + yo\y, (45)
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where the zero-shear viscosity is given Iz;ﬁr:y;@L 775*’? velocity gradient. If the plates are separated far enough,
with 75¢=73[Q.+((3/2)Q3— Q,—BQy)/5] and 7¢ is  which we assume in the following, boundary effects can be

given by the last of Eqg20). Diagonal contributions to the neglected.

stress tensor have again be omitted since we consider incom- In the absence of a magnetic field, the orientation angle
pressible conditions. From E@43) it is seen that Parodi’s approaches the stationary valtg defined by

relation (41) is satisfied and holds for arbitrary &et num-

bers. Comparison of Eq$26)—(29) and (42)—(45) together cog260) == y1/v2=1/\. (50)
with Eq. (30) are compared in Sec. V with the result of
Brownian dynamics simulations of the full kinetic model for . ) .
steady shear flows. We will show that the agreement is betté%q' (50) which has no .SO".J“O” fo|r)\t|.<1..Therfefore, in the
for the first set of viscosity coefficienfggs.(26)—(29), (30)] apsence_ of a magnetic fielgh|<1 implies _d|rector tum-
than the secon@Egs. (42)—(45), (30)]. Thus, violations of bling while |)‘tl>1 al!ows for a steady SOIU.t'OIE%]‘ .
uniaxial symmetry by the kinetic model seem to be better, It t.he magnenzaﬂor(and not neces;anly the magneuc
approximated if the assumption of uniaxial symmetry is im_f|eld) is oriented parallel to the flow (si#=0) and gradient

posed on the formiL8) of the symmetric stress tensor than on (€0S6=0) direction, the so-called Miesowi¢gheay viscosi-
the definition(6). ties n,,7, are measured, respectively, withp2= a3+ ay
+ag and 2p,=—ay+ ayt as. Since these viscosities are

predicted to depend on the shape of the ferromagnetic units,
we will systematically label them with a second indgxin

In this section, the previous results are applied to the imthe following. By using Eqs(48) and (26)—(30) we obtain
portant situation of a steady laminar shear flow between two

The interpretation of\; as tumbling parameter stems from

C. Steady shear flow

parallel plates. The notion of the Miesowicz viscosities is 3e, 357 1 7
introduced. Let the flow be oriented along thdirection and 71r= Mor + 270 10 2+5S, (1=A)+ 7 Qaz~ on) Sz
the gradient iny direction,v=[v(y),0,0].

If the local magnetic fieldh lies in the plane of shear, the 4
magnetic field and the director can be written as + 3_5Q23S4}' (52)

h=h(cos¥,sin¥,0), n=(cosh,sinb,0), (46) >

J3e 382 1 7
M2, = Moy + 2714 Tom(l"i_)\t)_"? Qat 5Q0|S2

whered is the angle between the magnetic field and the flow
direction and@ is the angle between the director and hence
the magnetization and the direction. Thus, the alignment
angle ¢, introduced above, is given bg=39—6. In the
steady state, the momentum balaid@) becomes

4
+ 3_5Q2354 . (52

If the magnetization is oriented parallel to the flow vorticity,

. dp the Miesowicz viscosityp;= a,4/2 is measured,
9(0)y=gy+0, @7 e

1
Q325+ EQ2354 . (53

| R
wherey=dv/dy ando is the constant shear stress applied to dr o7 70

the fluid and
A fourth viscosity coefficienty,, has been introduced in or-

9(6)= %[Zal SIrP6 COL0-+ (atg— aty) SO+ (g der to fully characterize the shear viscosity,
N12=4745— 2( 1+ M) = @y,
+a3)C0520+ a4]. (48)
where 7,5 is the viscosity with the director parallel to the

If there is no pressure gradient and the flow is caused by ongisector between thg andy axis. From Eqs(51) and (52)
plate moving at uniform velocity parallel to its own plane we the difference of the Miesowicz viscosities is found to be
havedp/dx=0 ando#0. On the other hand, if the plates given by
are at rest and taking=0 at the center between the plates
givesdp/dx+0 ando=0. 4 3e 38t

In the present flow situation, the balance equation for the M2r = My =270 5~ m)\ﬁr QoS |- (54)
director, Eq.(25), becomes

In Sec. V, also thdexperimentally more importanvis-

Mn (7, + 7y, cos 20)+lsir( 9—0)=0, (49)  cosity coefficientsz,, 7,, and 7. are considered that are
2 measured if the magnetic fieldnd not necessarily the mag-
: netization is oriented in flow, gradient, and vorticity direc-
where ﬂle Mason number Mﬂry/h and dimensionless vis- tion, respective|y_ The Viscosity Coefﬁcier%, M and Ne
cosities y;=1v,/I', i=1,2, have been used. Equatio@) agree withz,, 7,, and 3 only in the limit Pe<1, see Sec.
and (49) can be solved to give the alignment angle and thdll A.
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From the Miesowicz viscosity coefficients the so-calledcommonly given in terms of the relative shear viscosity

McTague[1] viscosity coefficients are found,

=01 = (720 M3y)/2, (59

/et
which are measured in a pipe flow, if the magnetization is 7or 1+ 7185,r/ s
oriented in flow and perpendicular to the flow direction, re-

spectively. For spherical particle§=0, one obtainsy,
=1 and n, = 9o+ y1/4, whereng= 7o, -1 = 7s+ 7§ is the

change, which in case Rel is related toA?y? by

0
RO— 77i,r_770,r:A~0 5¢

(60)

Note that within the present mOdAi;7iO is independent of the
volume fraction¢ which is not the case faR” . In the limit

viscosity of a dilute suspension of magnetically neutralof strong magnetic field, M1, the magnetic moments are

spherical particles.

perfectly orientedS,—1. In this case, the Miesowicz vis-

Dilute suspensions of nonspherical particles also showeosities(51), (52), and(53) approach their limiting values

normal stress effects. The first normal stress coeffident
for the shear floww=[v(y),0,0] is defined asN;=(T,,

— Ty, with y=dv(y)/dy. Analogously, the second nor-

mal stress coefficienN, is defined as|\|2=(TZZ—Tyy)/'y.
For the geometry described by E@6), these coefficients
can be written as

N1=;[alcos(20)+(a2+a3)]sin(20), (56)

1
_szz[al sinf e+ as+ asz+ as+ aglsin(26). (57)

Note that the normal stress coefficierts,N, vanish for
perfect orientation in either flow or gradient direction.

D. Small Mason number

For small Mason numbers, Mal, the dynamics is domi-
nated by the magnetic field. For M0, the stationary value

- 3e, 1

7= no,r+2na’f[l—0<1—25>+ §<Q2+3Q3>}, (61)
- 3e, 1

= no,r+2ne‘;[ﬁ<1+28>+ §<Q2+3Q3>}, (62)

: (63

1
N3y = Mor T 2775{5((?2_ 2Q3)

with ni,r—>7;i°fr+0(h*1) asS—1. It is interesting to note
from Eqs.(62) and(63) that 775, > 7o, and 73, < 7o, , While
from Eq. (61) one finds, thaty;, > 7o, for r<r; and 57,
<mo, for r>rq, with r=~1.96. From Eqs(61)—(63) the
inequality 75,= 7,,> 53, is verified with 7;,=»,, for r
=1. We mention thaty;,=»,, is in agreement with the
results of nonequilibrium molecular dynamics simulations of
a fully oriented model ferrofluid if the magnetic interactions
of the colloidal particles are strong enouldtb].

For weak magnetic fieldh<<1, expamdingn?r in powers

o= 0 is found from Eq.(49). This corresponds to perfect 4t ihe Langevin parametdr leads to

alignment of the director with the external magnetic field. In

case of nonvanishing but small Mason number,<#In the
alignment angle is obtained from E@9) as 6= 6y+Mné6;
+0O(Mn?), with the first-order contribution

01:”5/1'}":)"2 cos 29. (58)

In the limit of perfect orientationS,=1, 6, becomesd; =1

+ B cos 29, while ;=0 for isotropic states. With the help of
the alignment angl®, the normal stress coefficieNt; given
by Eq. (56) becomes

Mn(‘;’l_’;/z)(_al"_az‘i‘ag) for ’8:77/2,

Y oM+ Yo (at apt ) for 9=0,
(59

if the magnetic field is oriented in the gradient£ 7/2) or
velocity (9=0) direction.

In the low Pelet number regime, the order paramet8rs
can be replaced by their equilibrium valug$®. Thus, the
Miesowicz viscositiesy; , given by Egs(51), (52), (53) be-
come explicit functions of the magnetic fiefdand the axis

7 =m0, +205cih?+0(h%)  for h—0, (64

where the coefficients; depend only on the axis ratig
c1=Cc—Qp(1-1/B)/12, co,=c+Qy(1+1/B)/12, andcz=
—2c, wherec=Q3,/105. For 7,,, the quadratic behavior
predicted in Eq(64) is seen in recent experiments on a com-
mercial ferrofluid[3].

Denoting the reduced McTague viscosity coefficients by
Ax=[7x,(N) = 7%, (N=0)1/ mx (h=0), X=]|,L, we no-
tice thatA| changes by approximately 30% anad by al-
most 400% forh~10 andr ~ 10.

IV. EFFECTIVE FIELD APPROXIMATION

The so-called quasi-equilibrium approximati0QEA) is
a powerful tool to derive macroscopic equations from kinetic
models[26—-28. Note, that in the context of ferrofluids, the
term “quasi-equilibrium approximation” is sometimes used
for the special approximation of neglecting magnetic relax-
ation processefl]. Here, the term QEA is used in its broad
sense, as is common in many branches of statistical physics
(see, e.9.[26,27 and references thergirNote, that “quasi”

ratio r. Figure 2 shows the reduced Miesowicz viscositieSypes not imply “near.”

Ap’=(n2,— n0,)/27§ , that result upon the replacemest

As set of macroscopic variables we choose the first mo-

—S7in Egs.(52), (52), (53). Experimental results are most ment of the distribution functionA=(u). The QEA is ob-
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FIG. 2. Reduced Miesowicz viscosity coefficiemts?yﬁrz(nﬁ,f noyr)/zng, as a function of the reduced magnetic fieldnd the axis
ratior of the ellipsoid. The figures fdr=1,2,3 from top to bottom, correspond to E¢51), (52), (53) with the replacemerts — S*Yh). We
observe tharﬁ;g is positive over the entire interval &f andr values shown and increases monotonically with increakiagdr. On the
contrary,A?;g is negative and decreases monotonically with increakiagdr. Finally, A:ﬁ is negative and decreases monotonically with

increasingh andr only for large values oh andr.

tained by minimizing the free energy functional subject towith the normé, of &,. Note, that the distribution functions

fixed constraint$26,27,29,
F[f]—min, (1)=1, (u)=A. (65)

Carrying out the minimization of the functionél2) subject
to the constraint$65), one obtains

f*(u)=fefu)expA-u+Ao) (66)

with the dimensionless Lagrange multiplieksand A ;. Av-
erages of functionA(u) with respect to the distribution
function (66) are denoted by

<A>*Ef d2uA(u) fegu)exp(A-u+Ay). (67)

The Lagrange multipliers\ and A, are determined by the
constraints

(Dy=1 (u),=A (68)

Upon reparametrizatioré,=h+ A, the generalized canoni-
cal distribution(66) becomes

o e
f (U)—mexﬂﬁe'u) (69

(69) are uniaxially symmetricf* (u)=1f*(u-n), where the
director n is parallel to & and M*, n=§&./é.=M*/M*.
Therefore, results of Sec. Ill are also valid in the present
approximation.

Comparing Eqs(69) and (10), we observe that the QEA
distribution function can be obtained from the equilibrium
distribution upon replacing the magnetic fighdby the so-
called effective fields,=h+ A. Thus, the so-called effective
field approximation introduced in Rd#] is just the QEA for
the special choicé65) of macroscopic variables. While this
approximation gives accurate results in case of spherical par-
ticles,B=0 (see, e.9.[30]), the accuracy of the approxima-
tion (72) for B#0 remains to be studied.

Moments off* of order four or less are given by Egs.
(E1)—(E4), where the scalar orientational order parameters
S; are now given as explicit functions &,

S}k:Lj(fe), (70)

where functiond_;(x) are defined by Eq(22). The macro-
scopic magnetizatioM =ngu(u) is obtained in terms og,
as

M* =nuA=nul(&)& /& . (72)
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The time evolution of the macroscopic variabkes.e., of  (2.15 of Ref.[9] which does not consider terms proportional
the magnetizatioqu) within the QEA, is found from Eqgs. to the symmetric velocity gradieli. On the other hand, Eq.
(69),(16) with the help of Eqs(23),(70) and reads (75) is a special case of E¢L5) of Ref.[10] which contains

1 additional terms proportional td1xXh and MXD-M that
. . < cannot be derived within the present kinetic model when
A=QXA+B(D-A-{uuu), :D) - Z_(l—(uu)*)A. using the QEA. It should be mentioned that Egp) is de-
(72 rived from the kinetic model1), while the magnetization
] ) . equations proposed in Ref®,10] are derived within a ther-

The macroscopic free ener@y (A) is defined as the free  yogynamic framework. Note, that in the present case, the
energy functional12), evaluated with the dlstrlbut|~on func- Lagrange multipliersA are the conjugate variables to the
tion (66), F*(A)=F[f*]. The Lagrange parameteAshave  macroscopic magnetization with respect to the free energy,
a nice interpretation as the variables conjugate to the macr@q. (73), and play the role of the conjugate variables with

scopic ones, respect to the energy density introduced in R&f)]. Note
. also the limitation to uniaxial symmetry. In the case of
K:a': (A) (73) spherical particlesB=0, the result of Martsenyukt al. [4]
oA is recovered from Eq<75), (76), and(77).

_ _ ~ CoefficientA, has been determined experimentally very
~ The time rate of change of the macroscopic free energy igecently in Ref.[11]. For an ester based commercial ferro-
F*=A-A and becomes, upon inserting E¢83) and (72), fluid with volume fraction~0.07, a valuex,=0.2+0.05
was measured, roughly independent of the strength of the

F=7\-(Q><A)+B/~\~(D-A—<uuu)* :D) magnetic field between 5 and 16 kA/m. Interpreting this re-
sult within the present kinetic model we first notice that the

— i&(l—(uu)*)-x. (74) experiments in Ref[11] were performed in the low Rlet

27 number regime, Pe1. Thus the order paramete3sare well

approximated by their equilibrium valu&9. Inserting Egs.
Note that Eq.(74) coincides with the exact expression Eq. (??Sl)c)) aﬁld (40) int())l Eq_l(77?uvlvle flilrjld valuét "9 =4

(14) if the latter is evaluated withi*. This result illustrates

the fact that the QEA conserves the type of dynamics, i.e., 0 6+h2)L(h)—2h

the functionF*(A)=F[f*] is an H function of the QEA )\2%)\(2)5—7—5: ( 2) (h) (78)
dynamics if the functionaF is anH function of the under- Y1 h“L(h)

lying dynamics, whileF* is conserved by the QEA dynam- oo . )

ics if F is conserved by the underlying dynam[@&d]. For weak magnetic fields, like the ones employed in the ex-

periment of Ref[11], A= 2B+ O(h?) is obtained from Eq.
(78). The absence of a linear term mmight explain the
constant value ok, observed over the interval of magnetic
Inserting the explicit form of the moments of order two fie|d strengths 5H [kA/m]<16, approximately corre-
and three into Eq(72) and using Eq(71) yields a closed  sponding to 0.8:h=<0.96. Within the present kinetic model,

A. Magnetization equation

equation for the macroscopic magnetization, the experimentally determined value,=0.2+0.05 corre-
1 sponds to an asphericity of the particlesref1.4+0.1. This
M—QXM=— —(7,1+ 7,MM)- A+\,D-M value is smaller than the estimate in Réfl], r =2, which is
27 based on the stationary distributi¢hl) of ellipsoidal ferro-
+\g(D:MM)M, (75) magnetic particles in a potential flow.

As noted also in Refl10], the application of Eq(75) is

where the dimensional Lagrange multiplies have been limited to the uniaxial regime. In general, corrections to Eq.
; T_ 2 : .. (75 are expected in case of biaxial symmetry of the orien-
introduced A= pA/(kgT), and xo=nu"/(3keT) is the ini tational distribution function for the magnetic units. For a
discussion of biaxial symmetry in the case of spherical par-
ticles, see Ref[19].

tial susceptibility. The coefficients, ,\; are defined as

~ M L 3 | M
Tl:SXO_H_’ 7'2:_2%_'__)(0 ' (76)
e 2M e B. Stress tensor
In Ref.[10], also an expression for the symmetric stress
A=\ Ng=— 1 % (77) tensorT ® was given in terms of the conjugate variables. As
v (nw)? ¢ shown in Sec. II1,T S derived from the kinetic model under

the assumption of uniaxial symmetry is of the Ericksen-
where\ is given by Eq.(31), M denotes the norm of the Leslie form(A4). The comparison of this result to the stress
magnetizationM, and H is the norm of the dimensional tensor given by Eq(16) in Ref.[10] is facilitated by rewrit-
effective fieldH.=H+ A. Since we consider here only in- ing the stress tensd) in terms of the dual variableA.
compressible flows, terms proportional to trdzare absent. Within the QEA, the potential contribution to the symmetric
Equation(75) is, on the one hand, a generalization of Eq.stress tensofP®, can be rewritten as
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TPO=(u), A+ A(u), —2(uuu), - A. (79

Inserting the form of the moments and using the expressior ¢
for the macroscopic magnetization, we find

2
>
-

1
TF’O‘:E)\Z(MA+AM)+)\3MMM “A. (80)

der parameters
o
S

In Eq. (80), we have dropped diagonal contributionsTis"
since we consider here only incompressible flows. Equation
(80) is a special case of equati¢h6) in Ref.[10]. Viscous 02
contributions to the symmetric stress tensor are, however
absent from Eq(16) in Ref.[10] while they do occur in the

kinetic model considered here, E®). T i T e

or
ppE Sy e e red i ek

reduced time
V. BROWNIAN DYNAMICS SIMULATIONS
o . FIG. 3. Relaxational dynamics of the orientational order param-
In order to discuss the validity of several assumptionseterss, as a function of dimensionless timtér for a perfectly
made in the previous sections, we here present simulatiogriented initial state in plane Couette flow with@.1 and mag-
results of the numerical solution of the full kinetic mod&l.  netic fieldh=1.0 oriented in the gradient direction. From top to
The numerical solution to the kinetic equatid is obtained  bottom the rank of the order paramet&sincreases as=1,2,3,4.
by Brownian dynamicgBD) simulations of the stochastic The order parameters are extracted from the BD simulation with the
processU; that satisfies the following stochastic differential help of Egs.(E1)—(E4). The directorn and S; are defined by Eq.

equation corresponding to the kinetic equati8g]: (ED, while S;, S;, andS, are determined fronfuu), (uuu), and
(uuuu), respectively, assuming relatio(s2)—(E4).

dU,=P,-[(QX U,+BD-U,+ h)dt+th]—Utg. , , ,
T In the sequel, simulation results for the stationary state
@D will be presented that are collected as averages over the en-
semble and subsequent time averages for times<iO
<20r. Plane Couette flow is considered in order to allow

. - o . comparison to analytical results in Sec. lll C. Figures 4 and 5
Using Itos formula, it is verified that Eq(81) conserves the show the result of the BD simulation for the reduced shear

normalization ofJ,. We recall thatrQ= P&} (same forD) viscositiesz,, 7,, and7,, for Peclet number Pe 0.1 if the

with dimensionless tensoQ,D characterizing the flow ge- magnetic fieldand not necessarily the magnetizajisori-
ometries. The dimensionless simulation parameters are theénted in the flow, gradient, and vorticity direction, respec-
Langevin parameten=uH/kgT, the axis ratior, and the tively. Figure 4 shows the results of the BD simulations for
Peclet number Pe Dimensionless times are expressed inthe shear viscosities in comparison to the results in Sec. Il
units of a relaxation time. These parameters carry informa- pased on the assumption of uniaxial symmetry, where the
tion about the implicit system parametlf cf. Sec. I. For  values of the director components and the order parameters
example, for cylindrical units made of a given numbeof  were extracted from the BD simulation. It is seen from Fig. 4
particles,r=N, h=Nh;, r=Ney7;, and Pe=NeyPg in  that the results of Sec. Ill agree qualitatively with the nu-
terms of “microscopic” quantities. The latter may be consid- merical simulations and that Eq&6)—(29) provide a very
ered as fixed system parameters, if one is interested in th§ood description of the numerical results, while E@E2)—
influence of chain length on the material properties. On th€45) do so only for strong magnetic fields. As will be seen
other handN and alsa may be eliminated by using a further later, the assumption of uniaxial symmetry is violated for
model for the effect oh and Peon these parameters. weak magnetic fields so that results of Sec. Ill represent

In order to integrate Eq(81) numerically, a weak first- approximations to the actual viscosities. Since H@§)—
order scheme is used. By construction, the numerical schem@9) provide a better approximation also for this regime, we
guarantees the normalization of the random unit vettor no longer consider Eqg42)—(45) in the sequel. For weak
[32]. For various initial conditions, the simulations are per-magnetic field, the viscosity increases quadratically, while
formed for an ensemble of $@andom unit vectors), with  for strong field it approaches a limiting value. Since the Pe
time step 1037. Figure 3 shows the result of BD simulations clet number is small, it is expected that the viscosity coeffi-
for the (ensemble averaggedelaxational dynamics of the ori- cients are well approximated by the Miesowicz viscosities,
entational order parameteSs for a perfectly oriented initial ~ n,~#5;,, #ny~n,,, nc~mn3,. Figure 5 shows that the
state in a plane Couette flow with .1 and the magnetic agreement with the analytical predictiof&l)—(53) is very
field h=1 in the gradient direction. The value 8f and the  good.

The projector perpendicular ttJ; is denoted byP,=(1
—U,U,) andW, is a three-dimensional Wiener proc¢8g].

directorn are obtained from EqE1), while the valuesS, for It should be mentioned that three different shear viscosity
i>1 are obtained assuming relatioi2)—(E4). A stationary  coefficients, 75, 7,, and 7., have indeed been observed
state is attained for timets=27. experimentally on colloidal solutions of magnetite in tetrade-
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relative viscosity change

reduced magnetic field

-0.02

reduced magnetic field FIG. 6. Relative viscosity chandg® , Eq. (60), as a function of
reduced magnetic field for a colloidal suspension of magnetite in
FIG. 4. Viscosity changé’yxl'y— ns as a function of reduced tetradecane. Data are taken from R88]. Also shown is a fit to the
magnetic fieldh for plane Couette flows =(7yy,0,0). The Pelet ~ data by Eqs(51)—(53), where the axis ratio was choses 1.5. The
number is Pe-0.1 and the axis ratio was chosen 5. The ordering ~ ordering of the curves from top to bottomiis-2,1,3, correspond-
of the curves from top to bottom corresponds to magnetic fielddnd to magnetic fields parallel to the velocity gradient, the velocity
parallel to the velocity gradient, the velocity, and the vorticity di- and the vorticity direction, respectively. Symbols denote experi-
rection, respectively. Symbols denote results from BD simulationmental results, the straight lines represent the analytical results, Egs.
the solid and dashed lines represent the semianalytical results 61, (52), and(53) with the replacemen,— S7{h).
Eqgs.(26)—(29) and(42)—(45), respectively, where the values for the
order parameters and director components were obtained from thedlume fraction of¢~0.062 and mean magnetic moment
BD simulation. w1~3.53x 10% ug of colloidal particles. Although not stated
explicitly in Ref. [33], we assume the experimental results
cane[33]. The authors of Ref33] speculate that their results shown in Fig. 6 were obtained in the low &t number
might be explained by the presence of anisotropic, ellipsoidalegime. Thus, the relative change of shear viscosity is given
particles and estimate their aspect ratioFigure 6 shows by Rio, Eqg. (60). In qualitative agreement with the present
their result for the shear viscositieg,, 7,, and .. The  results, it is found thaty,> 7,> 7. and n,> 7,>0> 5, for
values of the magnetic field are transformed into the reducedieak magnetic fields. However, their resgl|t>0 for strong
magnetic fieldh assuming a temperature =300 K. Ac- magnetic fields is not predicted by the present model. This
cording to Ref.[33], the suspension shows hydrodynamicdiscrepancy is most likely interpreted as a signature of the
formation of structure induced by the external magnetic field,
3 T . T T T whose amounteffect onr in our notation should depend on
the applied magnetic fielth. In Fig. 6 also the analytical
results(51)—(53) with equilibrium values for the order pa-
rameters are shown. The axis ratiovas chosen as=1.5,
close to the estimate= 1.3 of Ref.[33]. The effective mag-
netic moment isu=ru, since the ellipsoidal particles are
considered as agglomerates of individual particles, each with
individual magnetic momen,. From Fig. 6 it is seen that
quantitative agreement with the theoretical predictions is
poor, except fory,. In view of the qualitative difference in
the behavior ofy3,, we have not attempted to improve the
comparison by a different fitr(is the only fit parameter in
Fig. 6), by considering polydispersity effects, or the effect of
the magnetic field on the shapeln Ref.[33], also results
for a different suspension showing higher anisotropy of the
viscosity coefficients are shown. Since in that case neither
FIG. 5. Viscosity chang&7?, as a function of reduced mag- volume fraction nor mean magnetic moment are given, no

netic fieldh for plane Couette flow. The Bt number is Pe0.1  cOmparison to the theoretical result is shown.

and the axis ratio was choser5. The ordering of the curves from In Fig. 7, the effect of the Réet number on the shear
top to bottom isi =2,1,3, corresponding to magnetic fields parallel ViSCOSity 7, is shown for fixed values of the magnetic field.
to the velocity gradient, the velocity, and the vorticity direction, Shear-thinning behavior is observed, in qualitative agree-
respectively. Symbols denote results from BD simulation, thement with experimental resul{$]. Note that an additional
straight lines represent the analytical results, E§%), (52), and  mechanism of shear thinning is present in ferrofluids due to
(53) with the replacemens— S*4h). the breakup of agglomerates in shear which is not included

reduced shear viscosity
o = N
wn — w [\~ wn

(=3
T T

-0.5

reduced magnetic field

021501-12



MAGNETIZATION DYNAMICS, RHEOLOGY, AND AN . .. PHYSICAL REVIEW E 66, 021501 (2002

3 . T . T . T . T T 0.1 . T . Y — T .
| J}E,U_u-n—a-ﬂ-n— =200 Nponpo |
[Eg
2asf - or .
w
8 o i
2 0.1 -
5 2r y "
g % i
] 02
Z 15 . 2
3 ERN|
s | ] g 03k
3 1 -]
g
0.4
0.5 - L
- ] 0.5
05
o _ L
o (o] (o] oo 00 5o |
L . 1 . I L0Q900000000O0 0.6, : : : m : s . 20
0 1 2 3 4 5 o
Peclet number reduced magnetic field
FIG. 7. Viscosity changes,— 7o,)/27¢ as a function of Péor FIG. 8. Normal stress differences;/2n§, with i=1,2, as a

plane Couette flow. The magnetic field is oriented in the gradienfunction of reduced magnetic field for plane Couette flow. The
direction. The value of the magnetic fieldris= 10 andh=1 for the ~ Magnetic field is oriented in the gradient direction. Thelenum-
upper and lower curves, respectively. Symbols correspond to BIYer is Pe=0.5 and the axis ratio was chosen ras5. Symbols
simulations, while solid lines represent the semianalytical resultindicate results of Brownian dynamics simulatigrircles: i=1;
Egs.(26)—(29), where the values of the order parameters and comSduaresi=2), while solid 42.1). and broken '(: 2) lines corre-
ponents of the director are extracted from the BD simulation. ~ SPond to the result of the uniaxial approximation.

in the present model. For strong magnetic fiehis,10, the  n by (u)=S;n, Eq.(EJ). In the literature, there exist several
simulation results are well described by E(&6)—(29) if the measures for deviations from uniaxial symmetry. Here, we
values of the order parameters and director components akse the biaxiality parametérdefined in Ref[35] as a func-
extracted from the BD simulation. For weak magnetic fieldstion of the scalar invariants of the alignment tensor
h=<1, we observe that the shear viscositybecomes lower (uu),_i.eLbzzi—Glgllg with I,=(uu):(uu) and I;
than the zero-shear valug,< 7, . This so-called “negative = ((uu)-(uu)):(uu). One hasb=0 in the case of uniaxial
viscosity” effect[1] has so far been observed only in oscil- symmetry whileb reaches its maximum value=1 in the
lating magnetic fields, while the present model predicts thigase of planar biaxial symmetry. Figure 9 shows Brownian
effect also for sufficiently high shear rates Pk, and weak  dynamics results of the biaxiality parameteas a function
magnetic fieldsh<<1. Note that it is difficult to fulfill the  of h corresponding to the same flow situation and the same
condition Pe>1 experimentally since most ferrofluids show Peclet number as in Fig. 8. We observe from Fig. 9 that
relaxation times of the order of I8 s[1]. However, using rapidly decreases with increasihgthus explaining the good
high-viscosity carrier fluids, relaxation times of the order ofagreement between the analytical results based on the as-
10 ms can be achieve@ee, e.g., Ref34]), so that shear sumption of uniaxial symmetry and the Brownian dynamics
rates of the order of 100~$ would be sufficient to satisfy simulation forh>1. It is interesting to note that the agree-
Pe>1. For weak magnetic fields, the agreement is not asnent between Brownian dynamics simulation and analytical
good as for strong magnetic fields and becomes worse faesults for uniaxial symmetry agree fairly well even for
increasing Peln this regime, it is expected that the assump-~1, where deviations from uniaxial symmetry do occur, as
tion of uniaxial symmetry does not hold. For the highestshown in Fig. 9. A similar situation was already encountered
Peclet number simulated, ‘Pel0, the results from Egs. for the special case of spherical particles, where a detailed
(26)—(29) for h=1 disagree with simulation results by a fac- analysis showed that biaxial corrections to the uniaxial ap-
tor of 2. proximation were found to be small, even if the paraméter
Figure 8 shows Brownian dynamics results of the first andapproaches values close to one.
second normal stress coefficiéwf,N, as a function oh for
the same flow situation with P€0.5. We observe thall; is
negative, with a minimum value roughly arouhe=5. The
second normal stress coefficied is found to be positive, In the present work, the relationship between the kinetic
N,<|N,|, and only weakly dependent on the magnetic fieldmodel of dilute suspensions of rigid, ellipsoidal, ferromag-
h. Also shown are the semianalytical results for the case ofietic particles and the Ericksen-Leslie theory of nematic lig-
uniaxial symmetry, calculated from Eq#4) and(26)—(29) uid crystals is established in Sec. Ill. It is found that for
with the valuesS; taken from the Brownian dynamics simu- uniaxial symmetry, the predictions of the kinetic model for
lation. We observe from Fig. 8 that the agreement betweethe stress tensor are of the same form as in the Ericksen-
these results is satisfactory and improves for increaking  Leslie theory. A complete set of viscosity coefficients is ob-
In order to further discuss the validity of the assumptiontained as a function of the orientational order parameters. In
of uniaxial symmetry made in Sec. lll, we define the directorthe limit of small Pelet numbers, the viscosity coefficients

VI. CONCLUSION
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model seem to be better approximated if the assumption of

08 ¢ - uniaxial symmetry is imposed on the for(h8) of the sym-
L o i metric stress tensor than on the definiti@h.
06_3 | Polydispersity effects and dependence of the size of the

agglomerates on the magnetic field should be taken into ac-
count for improved comparison with experimental results on
% 04F - ferrofluids. We mention that the present approach can easily
be extended to include a field-dependent size of particles
=r(h) and polydispersity effects by subsequent averaging of
the present results over values of axis ratioBollowing the
approach of Ref[15], the stress tensor in the uniaxial phase
is still given by Egs.(Al), where the Leslie coefficients;
given by Eqs(26)—(29) are replaced by their average values

reduced magnetic field a;. The averages are performed over all integer values of
axis ratios, reflecting the assumption of cylindrical aggre-
FIG. 9. Biaxiality parameteb, defined in Sec. V, as a'function gates of identical spherical particlgs5].
of reduced magnetic fieltd for plane Couette flow with Pel.0.
Circles, squares, and diamonds correspond to the magnetic field
being oriented in gradient, flow, and vorticity direction, respec- ACKNOWLEDGMENTS
tively.
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Predictions of the kinetic model are compared in Sec. IV
to the form of the magnetization and stress equation derived
within a thermodynamic framework in RefL0]. Within the

so-called effective field apprOXimation, the magnetization We here summarize the basic equations of the Ericksen-
equation derived from the present kinetic model is a special eslie continuum theory of anisotropic incompressible fluids
case of the previous result, while the stress tensor obtaingglith variable internal degree of alignment. The basic as-
from the kinetic model generalizes the expression given irsumptions of the classical Ericksen-Leslie theory of nematic
Ref.[10] due to viscous contributions. Recent experimentaliquid crystals[18,23 are that the internal structure is de-
results[11] for the coefficienth, occurring in the magneti- scribed by a unit vector field(x;t) (called the directorand
zation equation are interpreted within the present kinetighat the stress tensdris a linear function of the symmetric

model. o _ o velocity gradient ®=Vuv +(Vv)T and the corotational de-
Brownian dynamics simulation of the full kinetic model rivative ofn, N=n—Qxn, where 22=V X v is the vortic-

in plane Couette flow were performed in order to discuss th(ﬁy of the flow
validity of the assumption of uniaxial symmetry, and thus the '
assumption made to proceed with the effective field approxi-
mation. It is found that the viscosity coefficients are in good |~ ®1(NN:D)nn+a>nN+ a3Nn+a,D+ asnn-D
agreement with the results of the unigxial approximation, cf. +agD-nn. (A1)
Egs. (26)—(29), (30). The agreement is enhanced for strong

magnetic field, resp. low Mason numbers #h. We stress
that this agreement does not imply the actual distributio
function to be almost uniaxially symmetric. Indeed, even for
large values of the biaxiality parameter, indicating strong de-

viations from uniaxial symmetry, the moments that are rel- pv=—Vp+V.T, (A2)
evant for the stress tensor are still rather well approximated

by the uniaxial expressions.

The derivation of the viscosity coefficients within the
uniaxial assumption is not unique. We provide also a secon
nonequivalent set of viscosity coefficients that satisfy Par-
odi’s relation. Only in the limit of strong magnetic fields do
these sets of viscosity coefficients coincide. The Brownian 0=(1=nn)-[hy=y;N—y,D-n], (A3)
dynamics results reveal that the agreement is better for the
first set of viscosity coefficientkEgs. (26)—(29), (30)] than  whereh,, is the external director body force.
the secondEgs. (42)—(45), (30)], that satisfies Parodi’s re- It is useful to decompose the stress teriBanto its sym-
lation. Thus, violations of uniaxial symmetry by the kinetic metric and antisymmetric part,=T 5+ T2 where

APPENDIX A: DIRECTOR THEORY

r{n the absence of body forces, the balance of linear momen-
tum reads

wherep denotes the density of the fluid apdhe pressure.
eglecting director inertia and surface stresses, the diractor
beys the balance equation
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1 1
Ts= al(nn:D)nn+§(a2+ a3)(NN+Nn) + a4D+§(a5

+ag)(D-nn+nn-D), (A4)

1 1
Ta:—Eyl(nN—Nn)—EYz(nn'D_D'””)'

The viscosity coefficients; are commonly known as Leslie
coefficients. The coefficientg; are related tay; by

V1= a3z~ &y,

V2= Qg Us. (A5)

PHYSICAL REVIEW E 66, 021501 (2002
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In the Ericksen-Leslie theory, the six viscosity coefficientsg,q

remain undetermined phenomenological parameters,
stricted only by dissipation argumen3g],

a,=0, v,=0, (AB)

20,4+ as+ as—yglylzo. (A7)

APPENDIX B: ROTARY FRICTION COEFFICIENT

The exact original result for the rotary friction coefficient
Lot OF @ single prolate (> 1) ellipsoid is[37]

Lrot= 8777753-36r ) (B1)
with
2r’—1

In
2ryré—1

r+Jre—1 L -t
Y

(B2)

1
r4

In terms of the geometric coefficienB and Q, defined
below the dimensionless factey that occurs due to asphe-
ricity of particles, can be expressed as

5 Qo
e,=§ E

(B3)

For slightly deformed spheres with axis ratie 1+ € and
e<1, one gets

9 1089
e=1— ge-i- 350 e+0(e3) for r=1+e¢, (B4
while the opposite limity>1, gives
2
e for r>1. (B5)

“3[2In(2r)—1]
The latter expressiofB5) represents a good approximation
already forr=2.

APPENDIX C: GEOMETRIC CONSTANTS

The geometric coefficient®; depend only on the axis
ratio r of the ellipsoid and are given explicitly §0]

re-

Q23=3Q,+4Qs3, (C2

for convenience, where

Q3=0Q3—Qy,

coshlr for r>1,

r<l. €3

B=

cos 'r for

1
— X
ry|re—1 |

In Refs.[1,15], a different notation for the coefficien€; is
used, 3,=5¢Qq, @,=5¢Q1, {,=5¢(2Q3—BQo), xn=
—5¢(Q23—2BQyp), \,=B, andn=r.

In order to reobtain the results for spherical units1
from this manuscript, one just se¢s=1, B=0, Qp 232332
=0, andQ,=1/2 [the latter is not obvious at first glance
from Eq. (C1), see also Eq(D1) for the case of slightly
deformed spherésn all equations(we omitted the appear-
ance ofQq/B terms thereforg or visit our foregoing work
[19] as an alternative.

APPENDIX D: SLIGHTLY DEFORMED SPHERES

For slightly deformed sphere with axis ratio=1
+e, €<1 one findsB=¢€ and for the geometric coeffi-
cientsQ; up to O(€?):

_36 9¢? _1 € 47
"5 B0 T2 77 20
B 2¢ €2 _36 13€2 D1
Q=—7 51 Q=137 2010 (D1)

Consequently, the Leslie viscosity coefficie(®@§)—(29) are
given to lowest order ire as

¢9262
a;=—2n; ﬁsm

9¢€?
50

3e

e (D2)

art+ az= —4713’

51 92

B N ] i Sl
@y =270, 4710{732 6(343052 2572584”'
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a2 6e ) 153 368S
st ac=27m0| 7 S €| 179552 5154 |
with the zero-shear viscosity 7g,—1 .= 75+ 78(1

+52€2/175). In the limite—0, the viscosity coefficienty,
and vy, are given by Eq(30) with T'=nkgT/D,= 7¢[12/5
—18¢/25].

APPENDIX E: MOMENTS FOR THE UNIAXIAL PHASE

Considering uniaxial symmetry of the orientational distri-
bution function(21), its first moments are expressed in terms

of a directorn and scalar order paramete3sdefined in Eq.
(21):

(U)=5n, (E)

PHYSICAL REVIEW E66, 021501 (2002

1_

(uuy=S,nn+ 3821, (E2
(uuu)=S3nnn+%Ss(1n)sym, (E3)
(uuuu) =Synnnn+ ;34(1nn)sym

7-10S,+3S,
+ T(ll)syma (E4)

where subscript sym denotes symmetrization in all indices.
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